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 The prevalence of thalassemia among the Vietnamese population was studied, and clinical decision support 

systems (CDSSs) for prenatal screening of thalassemia were created. A cross-sectional study was conducted on 

pregnant women and their husbands visiting from October 2020 to December 2021. A total of 10,112 medical 

records of first-time pregnant women and their husbands were collected. CDSS including two different types of 

systems for prenatal screening for thalassemia (expert system [ES] and four artificial intelligence [AI]-based CDSS) 
was built. 1,992 cases were used to train and test machine learning (ML) models while 1,555 cases were used for 

specialized ES evaluation. There were 10 key variables for AI-based CDSS for ML. The four most important features 

in thalassemia screening were identified. Accuracy of ES and AI-based CDSS was compared. The rate of patients 

with alpha thalassemia is 10.73% (1,085 patients), the rate of patients with beta-thalassemia is 2.24% (227 

patients), and 0.29% (29 patients) of patients carry both alpha-thalassemia and beta-thalassemia gene mutations. 
ES showed an accuracy of 98.45%. Among AI-based CDSS developed, multilayer perceptron model was the most 

stable regardless of the training database (accuracy of 98.50% using all features and 97.00% using only the four 

most important features). AI-based CDSS showed satisfactory results. Further development of such systems is 

promising with a view to their introduction into clinical practice. 

Keywords: thalassemia, Vietnamese population, clinical decision support system, expert system, AI-based 

system 
 

INTRODUCTION 

Thalassemia–inherited autosomal recessive disease, which 

is characterized by impaired synthesis of hemoglobin protein 

chains [1]. A normal mature hemoglobin molecule (HbA) 

consists of two pairs of alpha and beta chains [2]. Thalassemia 

is caused by a gene mutation of the gene responsible for globin 

chains synthesis, based on which alpha-thalassemia and beta-

thalassemia, are distinguished [3]. Such a gene can be 

inherited from one parent or two. The child’s body produces 

fewer or no hemoglobin chains. The production of the other 

chains that make up globin does not end. As a result, unstable 

protein components are produced that destroy the blood cells 

[4]. Thalassemia is thus the result of reduced synthesis of at 

least one globin polypeptide chain, resulting in abnormal 

erythrocytes, anemia and often in iron overload [5].  

The severity of the disease depends on the number of 

mutated alleles. In humans, the alpha chain of hemoglobin is 

encoded by two pairs of genes, while the beta chain has only 

one pair. Patients with one alpha+allele are clinically normal 

and are called asymptomatic carriers. Heterozygotes with 

defects in two of the four genes (small alpha thalassemia) tend 

to develop microcytic anemia of mild to moderate severity, but 

with a subclinical course. Defects in three of the four genes 

significantly impair alpha-chain synthesis in which case 

hemolytic anemia and splenomegaly are common. A defect in 

all four is a fatal condition that causes intrauterine fetal death 

[6]. Minor beta-thalassemia occurs in asymptomatic 

heterozygotes with a mild to moderate clinical picture of 

microcytic anemia. Intermediate beta-thalassemia presents a 

variable clinical picture due to the inheritance of two beta-

thalassemia alleles. Large beta-thalassemia (Cooley’s anemia) 

occurs in homozygous patients or complex heterozygotes as a 

https://www.ejgm.co.uk/
mailto:trangnguyen@hmu.edu.vn
https://doi.org/10.29333/ejgm/13206
https://orcid.org/0000-0003-2335-8083
https://orcid.org/0000-0002-2007-1151
https://orcid.org/0000-0002-0135-640X
https://orcid.org/0000-0001-9977-1179
https://orcid.org/0009-0008-4931-6213
https://orcid.org/0000-0003-1998-6538
https://orcid.org/0000-0002-4842-5652
https://orcid.org/0000-0002-9768-4474
https://orcid.org/0000-0003-4768-7682


2 / 9 Tran et al. / ELECTRON J GEN MED, 2023;20(4):em501 

result of a severe beta-globin defect. These patients develop 

severe anemia and bone marrow hyperactivity [7, 8]. In 

addition, it is rare to find simultaneous disorders in both alpha- 

and beta-chain at once, but in this case the disease may be 

milder because there is little imbalance between the two types 

of chains [3]. Thus, severe forms of the disease seriously affect 

physical development, causing patients to need continuous 

blood transfusions for life, causing many complications in the 

liver, heart, endocrine glands, and bones. The disease is not 

only life-threatening, affecting the quality of life of the patient, 

but also expensive treatment costs bring a burden to the family 

and the whole society [9]. 

Worldwide, an estimated 7.00% of the population carries 

the thalassemia gene, and each year between 300,000 and 

500,000 babies are born with severe homozygosity for the 

disease [10, 11]. In Vietnam, there are more than five million 

people who carry the gene and suffer from thalassemia, every 

year there are more 100,000 children carrying the disease gene 

and 1,700 children with severe disease due to mutations in 

both genes [12]. Thalassemia is distributed in all provinces and 

ethnic groups throughout the country, especially ethnic 

minorities in mountainous provinces [12]. 

Thalassemia is a preventable disease by screening 

pregnant women and their husbands at risk of carrying the 

disease gene to prevent having children with the disease [13, 

14].  

Nowadays, modern technology has been researched and 

applied in the field of medicine to support doctors in patient 

care as well as practice specialize [15]. A clinical decision 

support system (CDSS) is “any electronic or non-electronic 

system designed to aid directly in clinical decision making in 

which characteristics of individual patients are used to 

generate patient-specific assessments or recommendations 

that are then presented to clinicians for consideration” [16]. 

CDSSs are classified as expert knowledge-based systems and 

artificial intelligence (AI) [17]. CDSSs have many advantages, 

such as reducing the rate of misdiagnosis, improving efficiency 

and patient care, and reducing the risk of medication errors 

[18]. For thalassemia, there have been studies around the 

world applying AI in screening carriers with high efficiency. In 

2002, Amendolia and colleagues [19] studied and built a real-

time classification system based on artificial neural networks 

(ANNs) to distinguish thalassemia gene carriers and normal 

people with an accuracy of 94.00%, a sensitivity of 92.00% and 

a specificity 95.00%. In 2013, the study [20] compared the 

performance of radial basis function (RBF) network, 

probabilistic neural network (PNN), and k-nearest neural 

network (KNN) algorithms in thalassemia screening with 304 

data samples. The results show that RBF algorithm had a 

sensitivity of 93.00%, a specificity of 91.00%, similar to the 

results of KNN of 80% and 91%, of PNN of 89.00% and 73.00% 

[20]. 

The screening for thalassemia in Vietnam is still mainly 

based on the two indexes (mean corpuscular volume [MCV] and 

mean corpuscular hemoglobin [MCH]) and performed 

manually, no CDSS has been built yet. This causes many 

difficulties in disease prevention at primary health care 

facilities and in ethnic minority areas because of the limited 

understanding of thalassemia not only by the people but also 

by the grassroots medical staff. The requirement is to build AI 

software and an expert knowledge-based system for 

thalassemia screening that can be applied to even primary 

health care facilities. 

Thus, the development and introduction into clinical 

practice of modern CDSSs for screening thalassemia in Vietnam 

is an urgent task. These systems can provide significant 

assistance to doctors in making optimal decisions, even in 

primary health care institutions. Special attention should be 

paid to CDSSs based on machine learning (ML) algorithms, 

which remain poorly studied. 

Therefore, our research was carried out with the following 

objectives: 

1. Investigating the prevalence of thalassemia in the 

Vietnamese population  

2. Building a CDSS for prenatal screening for thalassemia. 

METHODS 

Study Design 

This is a cross-sectional study conducted from October 

2020 to December 2021. Data were collected using convenient 

sampling method. We collected data of pregnant women and 

their husband when they come to National Hospital of 

Obstetrics and Gynecology for annual screening of birth 

defects through medical records. Data were collected from the 

medical records of patients who came to the hospital before 

the study. 

Study Subjects 

A total of 10,112 medical records of first-time pregnant 

women and their husbands were collected, of which 1,992 

cases were used to train and test ML models while 1,555 cases 

were used for specialized knowledge system evaluation. All 

patients underwent routine screening of thalassemia: 

peripheral blood smear, complete blood count (CBC), 

hemoglobin quantification by high performance liquid 

chromatography (HPLC), and capillary electrophoresis (CE), 

iron status tests. Detection of hemoglobin gene mutations by 

polymerase chain reaction (PCR) was performed for 1,364 

patients and 658 newborns to assess the prevalence of 

different forms of thalassemia in the Vietnamese population. 

Multiplex ligation-dependent probe amplification (MLPA) 

technique has been used for molecular detection of alpha-

thalassemia. Reverse dot-blot PCR technique has been used for 

molecular detection of beta-thalassemia. 

Data Analysis 

Two types of CDSS models for thalassemia pre-screening 

have been created: four AI-based CDSS for ML and expert 

system (ES). The basic difference of these two types of systems 

is that one is based on the knowledge base gathered from the 

knowledge of experts, and the other is based on computer 

mining knowledge from medical data. The specialized ES was 

built based on the guideline for prenatal screening for 

thalassemia of the Vietnamese Ministry of Health. 

The following independent variables were used in ES CDSS: 

four most important indicators from CBC result (according to 

MID and MDA algorithms) including HGB, MCH, MCV, red blood 

cell distribution width (RDW), serum ferritin concentration 

from iron status tests result, HbA2, and HbF levels from HPLC 

result. In addition, one should consider the history of hydrops 

fetalis and having children or family members diagnosed with 

thalassemia. 
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There were 10 key variables for AI-based CDSSs for ML: the 

dependent variable was whether a patient had a thalassemia 

gene; nine independent variables including seven from the CBC 

result were hematocrit (HCT), MCH, mean corpuscular 

hemoglobin concentration (MCHC), MCV, hemoglobin (HGB), 

RDW, red blood cell (RBC) and the other two are iron status: 

serum iron and serum ferritin. In addition, AI-based CDSSs for 

ML were evaluated using the stated above four most important 

indicators (according to MID and MDA algorithms). 

 Data from 1,992 pregnant women and their husbands were 

used to train and test four ML models, which were KNN, 

support vector machine (SVM), random forest (RF), and 

multilayer perceptron (MLP). The purpose of these models is 

screening for thalassemia gene in pregnant women, husbands, 

and both pregnant women and husbands. Thus, we used data 

from all participants and divide it into two subsets, one with 

data from pregnant women only and the other from the 

husbands. After analyzing the dependent variable, which is 

whether the participant had thalassemia gene, we realized that 

there were more participants without thalassemia gene than 

those who did, which caused an unbalance in the dataset and 

result in the inaccuracy of all models. To solve this problem, we 

performed synthetic minority over-sampling technique 

(SMOTE). This method was introduced in 2002 [21], the idea is 

based on the k-nearest neighbors algorithm. We get one 

sample randomly from the minority layer a and one of its k-

nearest neighbors in the feature space, then we choose 

randomly a k-nearest neighbors b and draw a line between 

these samples in the feature space. New samples are created 

on this line as the combination of a and b. These new samples 

helped balance the datasets, which mean the number of 

participants with thalassemia gene is now equal to those who 

did not. Datasets were then standardized using z-score 

method, in particular we used StandardScaler command from 

scikit-learn library. Hyperparameters were found using grid 

search.  

All four models were tested using 10-fold cross validation 

using these datasets and evaluated by four indices: accuracy, 

precision, recall, and F1-score to find the best one. 

RESULTS 

Prevalence of Types of Thalassemia 

 10,112 pregnant women and their husbands performed 

the CBC, HPLC, and iron status during the study period. Based 

on the results of the CBC, HPLC, and iron status, 1,364 pregnant 

women and their husbands were prescribed a genetic test due 

to the suspected presence of thalassemia genes. The genetic 

test resulted in 1,085 (10.73% of the total number of pregnant 

women and their husbands) alpha-thalassemia cases and 227 

(2.24%) beta-thalassemia cases. A small ratio of 0.29% 

inherited both α- and β-thalassemia genes and 0.23% were 

others, including HbE disease, alpha thalassemia/HbE, beta 

thalassemia/HbE and hemoglobin constant spring disease 

(Table 1). Among 658 fetuses of parents with identified 

thalassemia genes who performed the genetic testing, the 

frequency of α-thalassemia (61.85%) was also higher than β-

thalassemia (13.07%) and others (including HbE disease, α-

thalassemia/HbE, and β-thalassemia/HbE) (0.61%) (Table 2). 

Determining Features of the CBC, HPLC, and Iron Status 

Test Needed to Screen for Thalassemia 

After using MID and MDA algorithms, we found that four 

indices included HGB, MCV, MCH, and RDW were the most 

important ones in the screening of thalassemia from the 

database containing 10,112 cases having CBC, HPLC, and iron 

status results (Figure 1 and Figure 2). 

Table 1. Frequency of different types of thalassemia in patients 

Types of thalassemia 
Pregnant women Husband 

Total % 
n % n % 

Patients who performed genetic testing 

Alpha thalassemia 566 6.40 519 40.83 1,085 10.73 

Beta thalassemia 117 1.32 110 8.65 227 2.24 

Co-inheritance of alpha- & beta-thalassemia 7 0.08 22 1.73 29 0.29 

Others 14 0.16 9 0.71 23 0.23 

Patients who did not perform genetic testing 8,137 92.04 611 48.07 8,748 86.51 

Total number of cases that performed CBC &d iron status test 8,841 100.00 1,271 100.00 10,112 100.00 
 

Table 2. Prevalence of thalassemia types in fetuses who 

underwent genetic testing 

Types of thalassemia n % 

Alpha thalassemia 407 61.85 

Beta thalassemia 86 13.07 

Co-inheritance of alpha- & beta-thalassemia 19 2.89 

Others 4 0.61 

Normal 142 21.58 

Total 658 100.00 
 

 

Figure 1. Feature importance using MDI algorithm-1 (Source: 

Authors’ own elaboration) 

 

Figure 2. Feature importance using MDA algorithm-2 (Source: 

Authors’ own elaboration) 
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Selection and Evaluation of the Effectiveness of AI Models 

in Screening for Thalassemia  

Experimental result with general CBC and iron status 

database 

According to Table 3, when using the four most important 

indicators in thalassemia screening instead of using them all in 

CBC and iron status database, accuracy and precision indices 

decreased but not much.  

With several models, the result was even more improved. 

For example, with SVM model, accuracy and precision indices 

were increased (95.00% and 91.25% versus 94.50% and 

90.12%). 

KNN model using only four important features and training 

with the general CBC and iron status database (pregnant 

women and their husbands) had an accuracy of 97.00%, a 

precision of 93.75%, a recall of 98.68%, and an F1-score of 

98.15% for original data and an accuracy of 92.50%, a precision 

of 85.90%, a recall of 98.68%, and an F1-score of 90.91% for 

SMOTE; MLP model had an accuracy of 97.00%, a precision of 

92.68%, a recall of 99.23%, and an F1-score of 96.20% for 

original data and an accuracy of 94.50%, a precision of 88.24%, 

a recall of 98.68%, and an F1-score of 93.17% for SMOTE. SVM 

and RF models showed similar, but slightly lower results for 

some indices (Table 3). 

Experimental result with CBC and iron status database of 

pregnant women 

With the data filtered for pregnant women, the training and 

testing are similar to the full one that include pregnant women 

and their husband. The results were shown in Table 4. 

The results showed that among four training models, KNN 

and MLP models were the best with 96.93% and 96.91% 

accuracy, 93.22% and 93.25% precision, 98.21% and 100.00% 

recall when using all CBC and iron status features. Wherein, 

with only four most important features, the accuracy of KNN 

and MLP models was impressively increased from 96.93% to 

97.53% and 96.91% to 97.81%. The accuracy of SVM model also 

increased from 95.68% to 96.91% (Table 4). One remarkable 

issue with this database was that after balancing the dataset by 

SMOTE technique, the result was improved for some indexes. 

Experimental result with CBC and iron status database of 

husband 

Similar to CBC and iron status data of pregnant women, the 

models trained were not disturbed by sex. With full CBC and 

iron status, RF model showed the highest accuracy at 97.55%, 

precision index at 95.46%, and recall index at 100.00% (Table 

5). With using only four important features, results were not 

changed, except for MLP model whose accuracy was increased 

significantly to 97.44%. One remarkable issue with this 

database was that after balancing dataset by SMOTE 

technique, results were decreased for some indexes (Table 5). 

Evaluation of Effectiveness of Expert System in Screening 

for Thalassemia and Comparation with AI Models 

To build an ES in screening for thalassemia, the rules in 

Table 6 were applied. The effectiveness of ES in the same CBC, 

HPLC, and iron status database that was used to test AI models 

was evaluated, including 396 pregnant women and husbands 

who met the inclusion criteria (presence of thalassemia gene 

by PCR). However, the result showed that 323 cases were 

determined the risk of having thalassemia by the software and 

73 cases that were not. The reason for 73 cases was that 

Table 3. Comparing results of models using four most important features with models using all features in general CBC & iron 

status database (pregnant women & their husbands) 

Model 
Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Original data SMOTE Original data SMOTE Original data SMOTE Original data SMOTE 

All CBC & iron status indices 

KNN 98.00 95.50 93.87 90.12 100.00 99.12 98.66 95.67 

SVM 95.00 94.50 94.50 90.17 97.15 97.15 95.34 94.04 

RF 97.00 95.50 93.24 85.24 98.86 96.45 96.08 92.45 

MLP 98.50 95.50 94.67 89.80 100.00 99.23 97.65 94.73 

Only four most important indices (HGB, MCV, MCH, & RDW) 

KNN 97.00 92.50 93.75 85.90 98.68 98.68 98.15 90.91 

SVM 94.50 93.50 90.12 87.18 96.05 96.05 93.59 93.00 

RF 96.00 92.50 91.46 84.27 98.68 96.15 94.94 90.68 

MLP 97.00 94.50 92.68 88.24 99.23 98.68 96.20 93.17 

Note. Precision & recall indices were calculated for thalassemia carrier 

Table 4. Comparing results of models using four most important features with models using all features in CBC & iron status 

database of pregnant women 

Model 
Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Original data SMOTE Original data SMOTE Original data SMOTE Original data SMOTE 

All CBC & iron status indices 

KNN 96.93 97.53 93.22 93.33 98.21 100.00 95.65 96.55 

SVM 95.68 92.60 91.52 83.33 100.00 98.21 93.91 90.16 

RF 96.91 91.36 91.80 80.00 98.21 100.00 95.72 88.90 

MLP 96.91 97.53 93.25 93.33 100.00 100.00 95.65 96.55 

Only four most important indices (HGB, MCV, MCH, & RDW) 

KNN 97.53 97.87 93.38 93.41 98.45 100.00 96.75 96.74 

SVM 96.91 90.74 91.80 79.71 96.43 97.83 95.73 88.00 

RF 96.22 91.12 90.74 79.45 97.56 99.54 95.65 87.60 

MLP 97.81 97.65 93.21 93.28 99.84 99.73 95.72 96.43 

Note. Precision & recall indices were calculated for thalassemia carrier 



 Tran et al. / ELECTRON J GEN MED, 2023;20(4):em501 5 / 9 

patients had performed only CBC test, neither serum ferritin 

nor hemoglobin variant analysis and no related history, which 

caused a lack of indicators to predict. 323 cases left were 

evaluated and calculated shown in Table 7 and Table 8. There 

were five incorrect cases in risk assessment (false positive) and 

no false negative cases, which meant no thalassemia patients 

were left out. Comparing ES with AI model, the accuracy of ES 

was 98.45%, while the KNN and MLP models was 97.00%, RF 

model–96.00%, and SVM model–94.50% when using only the 

four most important features (Table 8). 

DISCUSSION 

The present study analyzed the prevalence of different 

thalassemia types among pregnant women and their husbands 

who came to National Hospital of Obstetrics and Gynecology. 

The prevalence of different thalassemia types in fetuses of 

parents with established, according to PCR tests, thalassemia 

genes was also evaluated.  

The prevalence of alpha-thalassemia in pregnant women, 

husbands, and fetuses was higher than in beta-thalassemia 

carriers (Table 1 and Table 2). 

This may have been due to the fact that women whose 

babies had hydrop details in the previous pregnancy or the 

fetuses that were alpha thalassemia would show clinical 

manifestations so they would go for a check-up and perform 

prenatal screening tests to do the treatment or prevent 

thalassemia for the next pregnancy. This was the reason why 

the prevalence of alpha-thalassemia carriers of pregnant 

women who were screened for thalassemia was also higher 

than beta-thalassemia at the prenatal diagnostic center in 

Central Obstetrics Hospital in the [22]. 

In our study, 8,841 pregnant women were screened by CBC, 

HPLC, and iron status test, the prevalence of alpha-thalassemia 

carriers was 6.40%, the prevalence of beta-thalassemia carriers 

Table 5. Comparing results of models using four most important features with models using all features in CBC & iron status 

database of husbands 

Model 
Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Original data SMOTE Original data SMOTE Original data SMOTE Original data SMOTE 

All CBC & iron status indices 

KNN 92.31 92.31 95.00 94.72 90.48 90.23 92.68 92.23 

SVM 94.87 94.62 95.24 94.94 94.52 94.31 95.36 95.18 

RF 97.55 92.31 95.46 95.46 100.00 90.48 92.67 92.76 

MLP 97.91 97.44 94.46 95.46 96.55 91.92 97.68 97.68 

Only four most important indices (HGB, MCV, MCH, & RDW) 

KNN 91.44 90.84 94.86 94.54 90.12 89.87 91.64 91.52 

SVM 94.45 94.16 94.83 94.52 93.96 93.72 95.04 94.98 

RF 96.44 84.87 95.32 94.22 99.87 91.24 97.67 87.24 

MLP 97.44 94.18 96.42 95.44 100.00 95.95 97.62 95.18 

Note. Precision & recall indices were calculated for thalassemia carrier 

Table 6. Table on top of a page 

Evaluation Indices Values Conclusion Prediction results 

Anemia HGB 

Pregnant women≥110 & 

Husband≥130 
Non-anemia 

Insufficiency of data 

Pregnant women<110 & 

Husband<130 
Anemia 

Size of red blood cell MCV 

<85 Microcytic erythrocyte 

85-100 Normal-size RBC 

>100 Macrocytic erythrocyte 

Amount of hemoglobin MCH 

<28 Hypochromic erythrocytes 

28-32 Normochromic erythrocytes 

>32 Hyperchromic erythrocytes 

Iron deficiency Ferritin 
<13 Iron deficiency 

≥13 Non-iron deficiency 

Risk of thalassemia carrier if patient 

performed CBC test & ferritin blood test 

HGB, MCV, MCH, 

RDW, & Ferritin 
 

-Possible types of 

thalassemia  

-Recommendation for 

performing genetic testing 

searching for thalassemia 
mutations 

High risk of 

thalassemia 
Risk of thalassemia carrier if patient 

performed CBC test, ferritin blood test, & 

hemoglobin variant analysis test 

HGB, MCV, MCH, 

RDW, Ferritin, 

HbA2, & HbF 

 

History of hydrops fetalis or having children or family 

members diagnosed with thalassemia  
Yes or no 

Low risk or high risk 

of thalassemia 
 

Table 7. Evaluation of effectiveness of expert system 

 HR LR U (n=73) Indicators 

Patients with 

thalassemia  
113 0 36 

True positive 113 

True negative 205 

Patients without 

thalassemia 
5 205 37 

False positive 5 

False negative 0 

Note. HR: High risk; LR: Low risk; & U: Unknown 

Table 8. Table on top of a column (font size: 9) 

 ES 
AI model 

KNN SVM RF MLP 

Accuracy (%) 98.45 97.00 94.50 96.00 97.00 

Sensitivity (%) 100.00 - - - - 

Specificity (%) 97.62 - - - - 

Note. ES: Expert system & AI: Artificial intelligence 
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was 1.32%, the prevalence of co-inheritance of alpha and beta-

thalassemia was 0.08% (Table 1), which were higher than those 

in [23]. In this study, the percentage of pregnant women 

carrying the alpha-thalassemia carriers, beta-thalassemia 

carriers and co-inheritance of alpha, and beta-thalassemia 

were 1.11%, 0.52% and 0.07%, respectively. However, in both 

studies, the percentage of pregnant women and pregnant 

women with alpha-thalassemia carriers was the highest (6.4%, 

61.85% and 1.11%, 71.30%) [23]. However, our results were 

lower compared to the research of [24] (8.10% and 3.40%) and 

[25] (alpha gene carrier thalassemia is 9.80%). The reason for 

these differences can be explained by the difference in size, 

region, and country. 

Nowadays, one of the most important components in 

family planning and pregnancy is the detection and prevention 

of hereditary pathologies in future offspring. In this regard, 

genetic tests and consultations are conducted for future 

parents, based on which final decisions are made. CDSS, which 

is currently being widely implemented in various fields of 

medicine, can undoubtedly provide significant assistance to 

physicians in the diagnosis and prognosis of hereditary 

pathologies [26].  

Thalassemia is a complicated disease without any cures. 

Currently, the best strategies for thalassemia management are 

screening for thalassemia based on family history, cell blood 

count, serum iron and Ferritin. However, this is a challenge for 

primary health care facilities and ethnic minority areas due to 

the limited understanding of thalassemia not only by the 

population but also by the grassroots medical staffs. To solve 

this problem, the authors conducted a CDSS aiming to support 

physicians in screening and diagnosing thalassemia. CDSS is a 

system comprising two different systems: ES and AI-based 

CDSS. 

ES is a knowledge-based CDSS encoding the experts’ 

knowledge into an automated system [27]. The operating 

principle of ES is the simulation of the procedure of diagnosis 

and screening for thalassemia done by medical physicians. It 

aims to support doctors deal with complicated cases, 

especially at the commune health centers where they are 

facing a shortage of qualified health workers. Like other ESs, it 

is composed of three main parts: The knowledge base, the 

inference engine, and the EHR front-end interface. The 

knowledge base includes a set of rules in the form of if-then 

rules built based on RBC indices, ferritin, and hemoglobin 

electrophoresis results by using the guideline for prenatal 

screening for thalassemia of WHO and the Vietnam Ministry of 

Health (Table 8).  

The guideline comprises recommendations proposed by 

experts and used by medical physicians to screen and diagnose 

thalassemia in clinical practice, thus it is reliable and suitable 

for the racial characteristics of Vietnamese people. The system 

also includes a knowledge update interface, with which the 

experts can enrich the knowledge base by updating their 

clinical experience and new medical knowledge directly. This is 

an important part to ensure the accuracy and the update of ES 

because the knowledge of thalassemia can be updated and 

changed over time. The inference engine is an essential part of 

ES, which applies the if-then rules of the knowledge base to the 

patient’s clinical data to create an inference. Development of 

the inference engine is an important step when building ES, in 

the research, to increase the accuracy of the system, the three-

layer model was applied.  

The EHR frontend interface of the model has two sections: 

the input section and the output section (Figure 3). The input 

section includes nine boxes to enter patients’ clinical 

information including cell blood count test results, plasma 

iron, and Ferritin. The output section, which includes three 

boxes shows the conclusion drawn by the inference engine. 

The conclusions drawn by ES predict the risk of thalassemia 

whether it is high risk or low risk, therefrom the physicians can 

identify if this case requires diagnostic genetic testing or not. 

The advantage of ES is that it is possible to explain how the 

system makes the recommendation, and due to this, it has high 

reliability and accuracy. Another advantage of our ES is that it 

is deployed on the Internet, thus it is possible for users to 

access ES at any computer and at any time with an internet 

connection. The evaluation of the effectiveness of the 

developed ES in thalassemia screening in the present study 

showed a high accuracy of 98.45%. 

 

Figure 3. Screenshots of web-based ES after submission of laboratory data (Source: Authors’ own elaboration) 
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Unlike ES, AI-based CDSS does not use the knowledge base, 

instead, it uses a form of AI called ML, which allows computers 

to learn from past experiences and/or find patterns in clinical 

data to make decisions, thus it does not require writing rules. 

ML describes the use of computer algorithms to determine 

patterns in very large datasets. Over the past years, ML has 

been applied in a wide range of medical fields and 

demonstrated impressive results, especially in clinical decision 

support, patient monitoring, and management [28]. There have 

been many ML techniques applied in building CDSS in which 

KNN, SVM, RF, and MLP are the most common techniques [29].  

To optimize CDSS, before constructing CDSS, the authors 

conducted to determine the features of the CBC, HPLC and iron 

status needed to screen for thalassemia. After using MID and 

MDA algorithms, it was found that four parameters included 

HGB, MCV, MCH and RDW were the most important ones in 

screening for thalassemia from the database containing over 

10,000 cases having CBC, HPLC and iron status results. This is 

consistent with the recommendation of WHO in screening for 

thalassemia, in fact, HGB, MCV and MCH are the parameters 

currently used in screening for thalassemia in clinical practice. 

In the research, the authors built an AI-based CDSS 

including two main components: AI algorithm and the EHR 

frontend interface.  

To determine most appropriate AI algorithm for 

constructing AI-based CDSS, the authors conducted to train the 

dataset on four models SVM, KNN, MLP, and RF then evaluated 

them on four indices: accuracy, precision, recall, and F1-score 

to choose the most appropriate one.  

The obtained result showed that the MLP model was the 

most stable one regardless of the training database. 

Particularly, when training with the general CBC and iron status 

database for four most important features, it had an accuracy 

of 97.00%, a precision of 92.68%, a recall of 99.23%, an F1 score 

of 96.20% for original data, and an accuracy of 94.50%, a 

precision of 88.24%, a recall of 98.68%, and an F1-score of 

93.17% for SMOTE. When training with the database of 

pregnant women, it had an accuracy of 97.81%, a precision of 

93.21%, a recall of 99.84%, an F1-score of 95.72% for original 

data and an accuracy of 97.65%, precision of 93.28%, recall of 

99.73%, F1-score of 96.43% for SMOTE. Especially, with only 

four important features selected above, the results of the 

model were extremely impressive when the accuracy of MLP 

increased from 96.91% to 97.81%. Another remarkable thing 

about this database is that after balancing data with SMOTE, 

the results had a significant difference between the models. 

Thus, it is possible to temporarily draw the conclusion that with 

only the data of the pregnant woman, the model is no longer 

confounded by the cell blood count data of the husband. When 

training with the database of husbands, it had an accuracy of 

97.44%, a precision of 96.42%, a recall of 100.00% and an F1 

score of 97.62% for original data and an accuracy of 94.18%, a 

precision of 95.44%, a recall of 95.95% and an F1-score of 

95.18% for SMOTE.  

With such high accuracy, it is entirely possible to apply MLP 

to construct an AI-based CDSS to predict the risk of 

thalassemia. In fact, this has been proven by previous research. 

The study [30] proposed an AI model for thalassemia prenatal 

screening built by training and evaluating three models 

including KNN, NB (navie Bayes), and MLP, among which the 

MLP model got the highest accuracy with 99.73%. The study 

[31] proposed to apply MLP to build an AI model for 

thalassemia classification. In the research, the accuracy of the 

MLP was 98.11%. Like ES, EHR fronted interference of AI-based 

CDSS also has two sections: input section and output section 

(Figure 4). The difference between the two systems is that ES 

concludes the type of anemia and whether patients are at high 

risk or low risk while AI-based predicts the risk of thalassemia 

in the percentage form. 

Despite its advantage, the adoption of AI in medicine is rife 

with challenges, including the impossibility of explaining the 

logic that ML uses to make an inference (black box). In AI-based 

CDSS, the users and researchers can only know the inputs and 

outputs, but it is challenging to understand how it works inside. 

Therefore, the accuracy of AI-based CDSS is questionable [17]. 

To deal with this problem, the authors compared it to ES by 

 

Figure 4. Screenshots of web-based AI model after submission of laboratory data (Source: Authors’ own elaboration) 
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testing both ES and AI-based CDSS with 396 cases of 

thalassemia. The result showed that when testing on the same 

dataset, AI-based CDSS got an accuracy of 94.5%, 96%, and 

97% (depending on the algorithm used) when using four 

important features, which is slightly lower than ES with 

98.45%. This proves that it is possible to apply AI-based CDSS 

in screening for thalassemia. 

It should be noted that the proposed AI-based CDSS for 

thalassemia screening is experimental. The advantage of 

algorithms built on deep ML over physician-based assessments 

requires more in-depth and comprehensive research. 

According to a meta-analysis of publications on the use of 

AI in CDSS models for various diseases, no advantage of 

algorithms built on deep ML over physician estimates was 

noted [32]. It is noted that the effectiveness and safety of AI-

based CDSS varies and is ambiguous: there are both successes 

and failures [33]. Regarding the proposed AI-based CDSSs, it is 

important to note that future advances in genetic diagnosis of 

thalassemia may require a significant revision of these CDSS 

and new studies to confirm the effectiveness and safety of such 

systems. AI-based CDSSs are an emerging but understudied 

field, requiring much effort before showing real progress. 

CONCLUSION 

Based on PCR tests, it was found that among pregnant 

women and their husbands who came to National Hospital of 

Obstetrics and Gynecology, the rate of patients with Alpha 

thalassemia is 10.73% (1,085 patients), the rate of patients with 

beta-thalassemia is 2.24% (227 patients), and 0.29% (29 

patients) of patients carry both alpha-thalassemia and beta-

thalassemia gene mutations. The authors successfully built 

expert and four AI-based CDSS for prenatal screening for 

thalassemia. ES developed based on WHO and Vietnamese 

Ministry of Health rules and guidelines for prenatal thalassemia 

screening showed an accuracy of 98.45%. Among AI-based 

CDSS developed, the MLP model was the most stable 

regardless of the training database (accuracy of 98.50% using 

all features and 97% using only the four most important 

features). When comparing ES with AI-based CDSS, 

comparable accuracy of ES and AI-based models was 

established. Thus, AI-based CDSS showed satisfactory results. 

Further development of such systems is promising with a view 

to their introduction into clinical practice. 
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