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 Background and objective: Hepatitis B virus (HBV) and hepatitis C virus (HCV) are major contributors to chronic 

viral hepatitis (CVH), leading to significant global health mortality. This study aims to predict the one-year 

mortality in patients with CVH using their demographics and health records. 

Methods: Clinical data from 82,700 CVH patients diagnosed with HBV or HCV between January 2014 and December 

2019 was analyzed. We developed a machine learning (ML) platform based on six broad categories including linear, 

nearest neighbors, discriminant analysis, support vector machine, naïve Bayes, and ensemble (gradient boosting, 

AdaBoost, and random forest) models to predict the one-year mortality. Feature importance analysis was 

performed by computing SHapley Additive exPlanations (SHAP).  

Results: The models achieved an area under the curve between 0.74 and 0.8 on independent test sets. Key 

predictors of mortality were age, sex, hepatitis type, and ethnicity. 

Conclusion: ML with administrative health data can be utilized to accurately predict one-year mortality in CVH 

patients. Future integration with detailed laboratory and medical history data could further enhance model 

performance. 
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INTRODUCTION 

Millions of people are impacted by chronic viral hepatitis 

(CVH), which makes it a substantial healthcare challenge 

around the globe. It is characterized by persistent 

inflammation of the liver caused by viral infections, primarily 

the viruses known as hepatitis B virus (HBV) [1] and hepatitis C 

virus (HCV) [2]. According to the World Health Organization 

(WHO) report [3], there were an estimated 296 million people 

who had chronic hepatitis B, while nearly 60 million individuals 

had chronic hepatitis C (CHC), which made up 3.8% and 0.8% 

of the world population, respectively in 2019. In Kazakhstan [4], 

the inpatient and outpatient registries recorded a total of 

82,700 individuals diagnosed with HBV or HCV between 2014 

and 2019.  

Infections caused by HBV [1] and HCV [2] are the primary 

factors leading to chronic cirrhosis, hepatocellular carcinoma, 

liver failure, and other liver-related deaths. WHO reported that 

in 2019, HBV and HCV infections caused approximately 1.1 

million deaths [3]. In the absence of further interventions, it is 

projected that the estimated death toll from hepatitis could 

reach 19 million from 2015 to 2030. WHO has set a target to 

reduce mortality rates by 65% by 2030 [5]. Therefore, it is 

important to develop an effective mortality prediction system 

to assist clinicians in tailoring treatment strategies and 

enhancing the survival rates of HBV and HCV patients. 

Machine learning (ML) models have been widely utilized in 

various healthcare applications. Several research papers have 

employed ML techniques for predicting hepatitis [6-8]. For 

instance, it was used six ML algorithms, including logistic 

regression (LR), K-nearest neighbors (KNN), decision tree (DT), 

support vector machine (SVM), XGBoost (XGB), and artificial 

neural networks (ANN) to predict CHC [8]. Moreover, ML 

techniques have been applied to predict treatment response in 

patients with CVH [9-11]. It was predicted the treatment 

response against L-ornithine L-Aspartate medicine in hepatitis 

C patients utilizing various ML techniques, including naïve 

bayes (NB), random forest (RF), DT, and KNN, to name a few 

[10]. Additionally, ML algorithms were used to diagnose the 

stage of hepatitis [12]. Researchers have also leveraged ML 

models to accurately predict the risk of mortality in patients 

diagnosed with CVH, utilizing clinical and administrative data 

[13-15]. However, there were no studies focusing on the 
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predicting one-year mortality for CVH patients using only 

administrative data, which encompasses demographic data 

(age and sex), comorbidities and complications, diagnoses, 

and characteristics of service providers. This focus is warranted 

because these information are generally easy and inexpensive 

to collect.  

To address this issue, we developed an ML platform to build 

a model that predicts one-year mortality in patients with CVH. 

The ML platform was developed using the clinical data of a 

group of CVH patients diagnosed with hepatitis between 

January 2014 to December 2019, collected from the 

Kazakhstan unified national electronic health system (UNEHS) 

[16]. The dataset was split into four groups to predict the one-

year mortality, using clinical data gathered until the end of the 

previous year. Our study demonstrates the feasibility and 

robustness of this ML platform, which utilizes aggregated 

nationwide administrative healthcare data to predict one-year 

mortality in CVH patients of Kazakhstan. Additionally, we 

identified and ranked the clinical variables in the developed 

predictive models. 

 A one-year mortality prediction model for hepatitis 

patients can be used as an auxiliary tool in clinical practice. It 

would enable medical professionals to create personalized 

treatment strategies and take preventive measures to reduce 

negative outcomes. Additionally, this model would help in 

better managing healthcare resources, highlighting the need 

for regular monitoring or additional care for patients 

considered to be at higher risk. 

RESULTS 

Data Description 

This study aims to use administrative health data to predict 

the one-year mortality of CVH patients. To accomplish this 

goal, clinical records of individuals diagnosed with either HBV 

or HCV were extracted from the UNEHS [4] database between 

January 2014 and December 2019 (for details on how the 

patient cohort was selected, refer to the materials and 

methods section). Patients with missing vital outcomes, either 

deceased or alive, were excluded from the analysis. The 

remaining data were then divided into four sub-cohorts, 

corresponding to the years 2016, 2017, 2018, and 2019, to 

predict yearly mortality for each year using clinical information 

available until the end of the previous year. For instance, the 

2017-cohort was formed from the patients who were alive as of 

31st December 2016 with known outcome variable (for further 

details, refer to Appendix A). The number of patients in 2016-, 

2017-, 2018-, and 2019-cohorts is 29,301, 39,553, 50,618, and 

63,541, respectively. However, it is important to note that the 

dataset is highly imbalanced, as indicated by the ratios of 

decedents to survivors in each cohort: 349:28,952 for 2016, 

551:39,000 for 2017, 727:49,891 for 2018, and 783:62,758 for 

2019. Table 1 contains clinical variables used for predicting 

mortality. We handled missing values by imputing the median 

for numeric data and mode for categorical data using the 

values from the training data. Furthermore, stratified random 

sampling was used to divide each-year-specific cohort into a 

training set (80% of the data) and a test set (20% of the data)–

this practice maintains the proportion of alive versus deceased 

cases the same as in the full cohort. The training set is utilized 

to train and select the predictive model, which is then 

evaluated using the test set. 

Yearly-Specific Classifier Training and Selection for One-

Year Mortality Prediction 

Twelve different classifiers were utilized in this study: linear 

models including logistic regression with 𝐿2  ridge penalty 

(LRR) [17], support vector machines with linear kernel (SVM) 

[18], linear discriminant analysis (LDA) [19], and perceptron 

(PER) [20]; Gaussian naïve Bayes (GNB) [20], ensemble methods 

including RF [21], XGB [22], LightGBM (LGB) [23], gradient 

boosting with regression trees (GBRT) [24], and Adaboost with 

decision trees (ADB) [25]; KNN [20]; quadratic discriminant 

analysis (QDA) [19]. The selection of these classifiers is 

discussed in detail in the Materials and Methods section. The 

training process involved selecting the model and tuning its 

hyperparameters on each yearly-specific training set using 

stratified 5-fold cross-validation (5-fold CV). The area under the 

curve (AUC) was chosen as a performance indicator for 5-fold 

CV. Further information on the search space of 

hyperparameters for each classifier can be found in the 

Materials and Methods section. Table 2 provides the mean and 

standard deviation of the AUC estimates obtained during 5-fold 

CV for each classifier. The results indicate that the ADB, LRR, 

GBRT, and LRR classifiers demonstrated the highest AUC values 

for the 2016-, 2017, 2018-, and 2019-cohorts, respectively.  

Table 1. Description of clinical variables used in yearly-specific cohorts 

Feature Description Unit Type 

Type of hepatitis Chronic hepatitis C or chronic hepatitis B without delta function Binary Categorical 

Sex Female or male Binary Categorical 

Age Age at the diagnosis of hepatitis Years Numeric 

Ethnicity Kazakhs, Russians, and others Ternary Categorical 

Cirrhosis Complication for hepatitis (yes /no) Binary Categorical 

Duration of hepatitis Time from initial diagnosis to December 31st of the year preceding the prediction Years Numeric 

Hospitalization Whether the patient was hospitalized or not (yes/no) Binary Categorical 
 

Table 2. AUC estimates (mean ± standard deviation) for each 

classifier, calculated over 5-fold cross-validation applied to the 

yearly-specific training sets 

Classifier 
AUC 

2016 2017 2018 2019 

LRR 0.779 ± 0.014 0.790 ± 0.019 0.772 ± 0.014 0.793 ± 0.010 

PER 0.613 ± 0.070 0.614 ± 0.069 0.606 ± 0.079 0.657 ± 0.071 

GNB 0.766 ± 0.023 0.778 ± 0.011 0.754 ± 0.011 0.775 ± 0.01 

SVM 0.780 ± 0.015 0.789 ± 0.013 0.772 ± 0.013 0.791 ± 0.010 

KNN 0.558 ± 0.018 0.568 ± 0.008 0.555 ± 0.012 0.573 ± 0.013 

RF 0.646 ± 0.031 0.630 ± 0.015 0.620 ± 0.018 0.635 ± 0.018 

XGB 0.771 ± 0.022 0.774 ± 0.016 0.772 ± 0.014 0.782 ± 0.017 

LGB 0.775 ± 0.018 0.783 ± 0.019 0.767 ± 0.016 0.788 ± 0.014 

GBRT 0.776 ± 0.021 0.788 ± 0.017 0.777 ± 0.014 0.789 ± 0.019 

ADB 0.785 ± 0.017 0.788 ± 0.019 0.772 ± 0.012 0.791 ± 0.011 

LDA 0.780 ± 0.016 0.789 ± 0.014 0.771 ± 0.014 0.791 ± 0.018 

QDA 0.775 ± 0.013 0.788 ± 0.013 0.772 ± 0.015 0.791 ± 0.010 
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Evaluation of Year-Specific Classifiers for One-Year 

Mortality Prediction 

The final classifier for each sub-cohort was trained using 

the optimal year-specific classifier and its hyperparameters 

identified during the model selection phase. We evaluated 

selected classifiers based on the respective yearly-specific test 

sets, measuring performance through metrics such as 

balanced accuracy, AUC, specificity, sensitivity, and geometric 

mean score (G-mean).  

Figure 1 illustrates the step-by-step process of selecting 

the best predictive model and evaluating its performance. 

Table 3 provides the performance results obtained on the held-

out test data. Additionally, Table A1, Table A2, Table A3, and 

Table A4 in Appendix A include the confusion matrices for 

each year-specific classifier, based on their test set evaluations. 

Each classifier reached an AUC over 0.74, which is considered 

“fair” based on the objective metrics of diagnostic tests. 

Notably, classifiers from the years 2016 and 2019 obtained an 

AUC over 0.78, approaching the “good” performance level (as 

defined in [26]). Furthermore, the results indicate that each 

classifier, except for the 2018-specific classifier, exhibited 

greater sensitivity compared to specificity. For our specific 

application, high sensitivity is a desirable feature as the risk of 

failing to identify who is at risk of dying within a year is more 

critical than mislabeling a patient as at risk of “death” who is 

likely to survive. 

Impact Direction and Importance of Each Feature for One-

Year Mortality Prediction 

Our approach included conducting a SHapley Additive 

exPlanations (SHAP) [27] analysis to achieve two main 

objectives: firstly, to assess the individual significance of each 

feature in predicting mortality; and secondly, to understand 

how each feature influences the direction of the prediction. 

SHAP values were computed for each year-specific classifier 

selected during the model selection phase. In particular, we 

computed SHAP values for the ADB classifier in the 2016-

cohort, the LRR classifier in the 2017- and 2019-cohorts, and 

the GBRT classifier in the 2018-cohort. It is essential to note 

that since no feature selection was conducted, SHAP values 

were calculated for all clinical variables in the training dataset 

(see discussion section for further details). The bee swarm plot 

of SHAP values and bar plot of mean absolute SHAP values for 

the 2018 year-specific cohort are depicted in left part and right 

part in Figure 2, respectively. SHAP plots for the other year-

 

Figure 1. A flow chart describing the constructed machine learning platform (Source: Authors’ own elaboration) 

Table 3. Performance evaluation of the optimal yearly-specific classifier estimated on their corresponding test sets 

Year Optimal classifier Balanced accuracy AUC Specificity Sensitivity G-mean 

2016 AdaBoost 0.726 0.793 0.666 0.786 0.723 

2017 Logistic regression 0.690 0.771 0.689 0.691 0.691 

2018 Gradient boosting with regression trees 0.685 0.746 0.728 0.641 0.684 

2019 Logistic regression 0.695 0.787 0.678 0.713 0.695 
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specific cohorts can be found in Appendix A. From the right 

part in Figure 2 it can be observed that age is the most 

important predictive feature and the left part in Figure 2 shows 

that older age has an association with higher mortality. To get 

a summary of the SHAP values across cohorts, we computed 

the average of the mean absolute SHAP values (AMAS) for each 

feature. By computing the AMAS value for each feature, we 

have obtained the following ranking of the features (in the 

order of importance): age, sex, type of hepatitis, ethnicity, 

duration of hepatitis, cirrhosis, and hospitalization. The 

corresponding AMAS values for these features were 0.697, 

0.298, 0.121, 0.099, 0.084, 0.039, and 0.020, respectively. 

Obtained findings indicate four key factors–age, sex, type of 

hepatitis, and ethnicity–rank as the most critical features for 

one-year mortality prediction. 

DISCUSSION 

Several studies have utilized a combination of 

administrative data (such as demographics and comorbidities) 

and clinical data (including vital signs, laboratory results) for 

mortality prediction of CVH patients. For instance, it was used 

the NB, C4.5 classifier, and decision table to assess the risks of 

hepatitis disease [28]. Among these algorithms, the NB 

classifier demonstrated the best performance, achieving an f-

measure of 0.848, and a sensitivity of 0.853. It was utilized NB, 

DT, SVM, and LR to predict HCV patient mortality. The LR 

algorithm outperformed the other models achieving an f-

measure of 0.86 and a sensitivity of 0.87 [29]. Another study 

focused on predicting the mortality of hepatitis patients using 

the LR algorithm, which showed an f-measure of 0.75 and a 

sensitivity of 0.9 [30]. It was predicted the mortality in patients 

with HBV using six classifiers including DT, LR, SVM, RF, ADB, 

and XGB [13]. Both ADB and LR outperformed the other 

classifiers, achieving an AUC of 0.93. Notably, among the 

reviewed studies, only it was reported an AUC and considered 

model explainability by performing SHAP analysis [13]. Results 

from their study indicated that bilirubin, high ascites levels, 

age, alkaline, and malaise levels are important features, with 

bilirubin being the most significant one.  

In comparison to these studies, our predictive models 

achieved lower AUC estimates. In particular, Table 3 

demonstrates that classifiers developed for each specific year 

reached an AUC in the range of 0.74 to 0.8–according to [26], an 

AUC in the range of 0.7 to 0.8 is considered ‘fair’ for a diagnostic 

test. Lower AUC estimates in our study can be partly explained 

due to the “administrative” nature of our features, which are 

generally easy to collect. In particular, in contrast with these 

studies, we neither use vital indicators nor laboratory tests.  

The findings of our research demonstrate that the four key 

predictors of one-year mortality for patients with CVH are age, 

gender, hepatitis type, and ethnicity. The left part in Figure 2, 

as well as Figure A1, Figure A2, and Figure A3 in Appendix A, 

illustrate a noticeable direct relationship between higher 

mortality and predictors such as older age and male sex. 

Furthermore, from the left part in Figure 2, it is observed that 

HCV patients have a higher risk of mortality than HBV patients. 

These findings are consistent with previous studies [13, 31, 32]. 

 In particular, the association between older age and higher 

mortality in CVH patients has been established by several 

studies [31, 33]. In another work, it was examined the 

relationship between age groups (20-49, 50-64, 65-85 years) 

and mortality of patients with HCV based on data collected 

from the veterans health administration hepatitis C clinical 

case registry of the United States [34]. The findings showed that 

patients in the older age groups (50-64 and 65-85 years) have 

higher mortality rates compared to patients in the younger age 

group (20-49 years). Similarly, research conducted on a 

nationwide register-based cohort in Denmark demonstrated 

that patients with HBV at an older age exhibit an elevated risk 

of mortality in comparison to younger patients [32].  

Several studies have examined the association between 

sex and hepatitis mortality. A population-based cohort study 

from France found that male patients with HBV have higher all-

cause and HBV-related mortality rates than their female 

counterparts [35]. The outcome of our research aligns with this 

study, demonstrating that males with CVH face an elevated risk 

of mortality compared to females diagnosed with the same 

disease. That being said, some studies have observed a greater 

risk of all-cause mortality in female patients with HCV [36]. 

A comprehensive 13-year population-based study in Asia 

found that patients with HCV faced a substantially increased 

risk of cardiovascular outcomes and overall mortality 

compared to those diagnosed with HBV [37]. Our study also 

showed a similar tendency, supporting these findings. Another 

factor of interest is the association between ethnicity and 

mortality among patients. Several studies investigated the 

prevalence and mortality of hepatitis in developed countries, 

 

Figure 2. SHAP results for a cohort of 2018 (left) bee swarm plot of SHAP values for the 2018 year cohort (red points show high 

feature values for a patient, while blue points denote low feature values & red points with positive SHAP values show direct 

relationship between the feature and the outcome, while the blue points with the same positive values suggest an inverse 

relationship) & (right) bar plot of the mean absolute SHAP values for the 2018 year cohort (bar plot illustrates the importance of 

each feature in predicting the outcome, where longer bars indicate a higher significance) (Source: Authors’ own elaboration) 
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considering ethnic disparities [38-40]. For example, a study 

conducted based on the chronic hepatitis cohort study from 

the United States revealed that African Americans had the 

highest rates of mortality, 26% higher than white patients, 

whereas Asian American/American Indian/Pacific Islander 

patients had the lowest mortality rates [40]. Similar to our 

conclusion, previous research based on the UNEHS database 

also reported a noticeable difference of mortality rates 

depending on ethnicity groups [41, 42]. 

Although our investigation utilized a relatively limited 

number of administrative features (seven variables detailed in 

Table 1), the constructed classifiers achieved an AUC in the 

‘fair’ range, which is a noticeable accomplishment in predicting 

one-year mortality in CVH patients. Another strength of our 

work is that the data is collected from a population-based 

registry and for a sufficiently long time that enables 

constructing classifiers based on a true random sample of the 

population. Moreover, this research is the first of its kind in 

Central Asia, providing valuable insights on predicting one-

year mortality rates of hepatitis patients in the region. The 

findings and the constructed models can help in creating better 

treatment plans and approaches for managing hepatitis in 

various healthcare environments. The findings could also be 

useful in raising public awareness and promoting healthier 

lifestyles to reduce hepatitis-related mortality. 

Our study has several limitations. From a clinical 

perspective, our study does not include laboratory data and 

detailed medical histories of the patients. Moreover, important 

information regarding comorbidities, such as diabetes 

mellitus, HIV, cardiovascular diseases, renal diseases, and the 

precise timestamp attached to each comorbidity, as well as 

anthropometric indices (BMI), and alcohol use, were not 

considered. Including these details could enhance the 

accuracy and effectiveness of predictive models developed in 

the future. However, incorporating such data would incur 

additional costs.  

From the standpoint of ML, our study lacks a feature 

selection stage. Although, this stage is less crucial in our 

current study due to the limited number of features and the 

large sample size, the inclusion of clinical notes or laboratory 

data could introduce additional features. In such a scenario, it 

would be generally expected to have a feature selection stage 

to mitigate the challenges related to high-dimensional data 

(also referred to as the peaking phenomenon [43] in pattern 

recognition). These aspects will be the subject of our future 

investigations. 

CONCLUSION 

In this study, an advanced ML platform was developed to 

predict one-year mortality in CVH patients using data from 

administrative health records. The constructed classifiers 

achieved an AUC in the range from 0.74 to 0.8, rated as ‘fair’ and 

approaching ‘good’, according to standard diagnostic test 

metrics. The AUC results indicate the feasibility of using solely 

low-cost administrative health data to predict one-year 

mortality in CVH patients. Moving forward, combining this data 

with key comorbidities, laboratory data, body measurements, 

and patients’ medical history could potentially lead to more 

accurate and robust predictive models, further enhancing 

patient care and treatment outcomes. The study identified that 

the top four most important predictors are age, sex, type of 

hepatitis, and ethnicity. These findings have significant 

implications, potentially leading to better tailored treatment 

approaches for hepatitis patients and could also support 

public health initiatives and encourage the adoption of 

healthier lifestyles to prevent hepatitis-related mortality. 

MATERIALS AND METHODS 

Study Population 

The initial dataset obtained from UNEHS included a 

substantial collection of 20,810,911 medical records from 

UNEHS, covering years 2014 to 2019, as two separate 

registries–inpatient and outpatient. Among the 11,157,509 

records in the outpatient registry, 69,560 were unique patients 

with CVH, identified using the international classification of 

diseases 10th revision (ICD-10) codes for hepatitis, specifically 

B18.1 (CVH B without delta-agent) and B18.2 (CVH C). The 

inpatient registry comprised a total of 9,653,402 records, 

involving 20,170 unique hepatitis patients (see Appendix A for 

details on how patients were selected). After combining the 

two registries and removing duplicates, the final cohort 

consisted of 82,700 unique hepatitis patients. Ethical approval 

was obtained from the Nazarbayev University Institutional 

Review Ethics Committee (NU-IREC) #745/12062023. As the 

study was conducted with secondary data from UNEHS, no 

informed consent was obtained. All research methods followed 

the “Reporting of studies conducted using observational 

routinely collected health data” (RECORD) guideline. 

Data Preprocessing  

Patients with missing vital outcomes were excluded from 

our analysis. The remaining data was organized into four year-

specific sub-cohorts: for the years 2016, 2017, 2018, and 2019. 

Each sub-cohort was used to predict mortality for the 

corresponding year, using the clinical data gathered until the 

end of the previous year. The number of patients in each cohort 

was, as follows: 29,301 in 2016-cohort, 39,553 in 2017-cohort, 

50,618 in 2018-cohort and 63,541 in 2019-cohort, respectively. 

However, it is important to note that the dataset is highly 

imbalanced, as indicated by the ratios of decedents to 

survivors in cohorts: 349:28,952 for 2016, 551:39,000 for 2017, 

727:49,891 for 2018, and 783:62,758 for 2019. There were seven 

clinical variables, including age, sex, type of hepatitis, duration 

of hepatitis, cirrhosis, and hospitalization, to predict mortality. 

For handling missing data, we imputed numeric feature values 

using the median of the corresponding variables in the training 

data, while missing categorical feature values were imputed 

using the mode. Finally, each year-specific cohort was 

randomly divided into training and test sets in an 80/20 ratio 

using stratified sampling to ensure the same proportions of 

decedents and survivors as in the complete cohort. 

Model Training, Selection, and Evaluation 

Twelve different classifiers were utilized in this study: linear 

models including logistic regression with 𝐿2  ridge penalty 

(LRR), support vector machines with linear kernel (SVM), LDA, 

and PER; GNB; ensemble methods including RF, XGB, LightGBM 

(LGB), gradient boosting with regression trees (GBRT), and 

Adaboost with decision trees (ADB); KNN; quadratic 

discriminant analysis (QDA). Table 4 displays the 

hyperparameter values that were utilized during the model 

selection phase for these classifiers. 
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The selection of predictive models was influenced by 

previous studies, in which these models had been commonly 

employed to predict hepatitis infection, treatment response, 

and mortality rate. It was predicted the infected patients with 

HBV using NB, KNN, RF, and LR [7]. In another work, DT, LR, 

SVM, RF, ADB, and XGB were used to predict mortality rate of 

HBV patients [13]. In another study, RF, SVM, and LR were 

utilized to predict 30-day and 90-day mortality rates of patients 

diagnosed with alcoholic hepatitis [44]. LGB and XGB were 

employed for pre-diagnosis of acute liver failure in [45]. XGB is 

regarded as one of the leading models for processing tabular 

data and has been extensively utilized for Kaggle competitions 

[46]. 

We employ stratified 5-fold cross-validation (5-fold CV) to 

select the best predictive model on each yearly-specific 

training set. The entire procedure of model selection using a 5-

fold CV is illustrated in Figure 3. The AUC is used as the 

performance metric for selecting a year-specific classifier, as 

the AUC is not reliant on any particular decision threshold in 

the classifier. Moreover, the decision threshold is further tuned 

to achieve the highest G-mean, especially in highly imbalanced 

datasets where a ‘default’ decision threshold could results in 

low G-mean scores. The fine-tuning process was done by 

varying the threshold between 0 and 1 in increments of 0.001 

and calculating the G-mean at each threshold point. 

The optimal year-specific classification rule, along with its 

hyperparameter values determined through 5-fold cross-

validation, was utilized to train a final year-specific classifier on 

the complete normalized training set. 

Table 4. Search space of hyperparameters for model selection 

using grid search with cross-validation 

Classifiers Hyperparameter 

Candidate 

hyperparameter 

space 

LRR 
Penalty L2 

Regularization parameter C 100, 10, 1.0, 0.1, 0.01 

PER 
Alpha 0.0001, 0.001, 0.01 

Penalty L2, L1, none 

GNB - - 

RF 

Number of estimators 10, 100, 1000 

Maximum depth 2, 5, 10, 20, 50 

Maximum features ‘auto’, ‘sqrt’, ‘log2’ 

XGB 

Maximum depth 5, 10, 100 

Number of estimators 10, 100, 1000 

Learning rate 0.001, 0.01, 0.1 

LGB 

Maximum depth 5, 10, 100 

Number of estimators 10, 100, 1000 

Learning rate 0.001, 0.01, 0.1 

GRBT 
Number of estimators 10, 100, 1000 

Learning rate 0.001, 0.01, 0.1 

AdaBoost 
Number of estimators 10, 100, 1000 

Learning rate 0.001, 0.01, 0.1 

KNN Number of neighbours 3, 5 

SVM 

Penalty L2 

Kernel Linear 

Regularization parameter C 0.1, 0.5, 1, 5 

LDA 
Solver ‘svd’, ‘lsqr’, ‘eigen’ 

Tolerance 0.00001, 0.0001, 0.0003 

Quadratic 

discriminant 

analysis 

Regularization parameter 0.1, 0.5, 0.7, 0.9 

Tolerance 0.00001, 0.0001, 0.0003 
 

 

Figure 3. Diagram illustrating the model selection implemented using 5-fold cross-validation (Source: Authors’ own elaboration) 
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Software and Packages 

The computational work for this study was conducted on a 

virtual server, which was powered by an AMD Opteron 

Processor 6174 at 2.19 GHz. This server was equipped with 22 

processors, a total storage capacity of 3.9 TB, and 200 GB of 

RAM. The main program was done in Python (version 3.11; 

Python Software Foundation), utilizing open-source packages 

such as scikit-learn, pandas, seaborn, matplotlib, XGB, 

lightgbm, and shap. 

Author contributions: IA: implemented ML framework and 

contributed to drafting the manuscript; DS: involved in data 

management, offered clinical expertise, and assisted in manuscript 

preparation; AA: assisted in implementing the ML framework; GZ, YS, 

& SY: participated in managing the data; AZ: designed the ML 

framework, drafting the manuscript, and took part in the experimental 

design and coordination; & AG: initiated the study, provided clinical 

insights, and played a key role in both coordinating the study and 

drafting the manuscript. All authors have agreed with the results and 

conclusions. 

Funding: This study was supported by grants from the Nazarbayev 

University Faculty Development Competitive Research Grant Program 

(AI and Data Science) 2024-2026 (Funder Project Reference: 

201223FD2604, title: An AI-based approach for analyzing electronic 

medical records: Prediction of healthcare outcomes and drug 

demand). A.G. is a PI of the project. 

Acknowledgments: The authors would like to thank all staff from the 

Republican Center of Electronic Healthcare for providing data and 

consultancy. 

Ethical statement: The authors stated that the study was approved by 

the Nazarbayev University Institutional Review Ethics Committee (NU-

IREC #745/12062023). Written informed consents were obtained from 

the participants. 

Declaration of interest: No conflict of interest is declared by the 

authors. 

Data sharing statement: Data supporting the findings and 

conclusions are available upon request from the corresponding author. 

REFERENCES 

1. Lai CL, Ratziu V, Yuen MF, Poynard T. Viral hepatitis B. 

Lancet. 2003;362(9401):2089-94. https://doi.org/10.1016/ 

S0140-6736(03)15108-2 PMid:14697813 

2. Poynard T, Yuen MF, Ratziu V, Lai CL. Viral hepatitis C. 

Lancet. 2003;362(9401):2095-100. https://doi.org/10.1016/ 

S0140-6736(03)15109-4 PMid:14697814 

3. WHO. Global progress report on HIV, viral hepatitis and 

sexually transmitted infections. World Health Organization; 

2021. Available at: https://www.who.int/publications/i/ 

item/9789240027077 (Accessed: 10 June 2023) 

4. Ashimkhanova A, Syssoyev D, Gusmanov A, et al. 

Epidemiological characteristics of chronic viral hepatitis in 

Kazakhstan: Data from unified nationwide electronic 

healthcare system 2014-2019. Infect Drug Resist. 

2022;15:3333-46. https://doi.org/10.2147/IDR.S363609 

PMid:35782528 PMCid:PMC9248955 

5. WHO. Combating hepatitis B and C to reach elimination by 

2030. World Health Organization; 2021. Available at: 

https://apps.who.int/iris/handle/10665/206453 (Accessed: 

10 June 2023) 

6. Li THS, Chiu HJ, Kuo PH. Hepatitis C virus detection model 

by using random forest, logistic regression, and ABC 

algorithm. IEEE Access. 2022;10:91045-58. https://doi.org/ 

10.1109/ACCESS.2022.3202295 

7. Mamdouh Farghaly H, Shams MY, Abd El-Hafeez T. 

Hepatitis C virus prediction based on machine learning 

framework: A real-world case study in Egypt. Knowl Inf 

Syst. 2023;65:2595-617. https://doi.org/10.1007/s10115-

023-01851-4 

8. Alizargar A, Chang YL, Tan TH. Performance comparison of 

machine learning approaches on hepatitis C prediction 

employing data mining techniques. Bioengineering (Basel). 

2023;10(4):481. https://doi.org/10.3390/bioengineering 

10040481 PMid:37106668 PMCid:PMC10135598 

9. Haga H, Sato H, Koseki A, et al. A machine learning-based 

treatment prediction model using whole genome variants 

of hepatitis C virus. PLoS One. 2020;15(11):e0242028. 

https://doi.org/10.1371/journal.pone.0242028 PMid: 

33152046 PMCid:PMC7644079 

10. Kashif AA, Bakhtawar B, Akhtar A, et al. Treatment response 

prediction in hepatitis C patients using machine learning 

techniques. Int J Technol Innov Manag. 2021;1(2):79-89. 

https://doi.org/10.54489/ijtim.v1i2.24 

11. Tian X, Chong Y, Huang Y, et al. Using machine learning 

algorithms to predict hepatitis B surface antigen 

seroclearance. Comput Math Methods Med. 

2019;2019:6915850. https://doi.org/10.1155/2019/6915850 

PMid:31281411 PMCid:PMC6594274 

12. Butt MB, Alfayad M, Saqib S, et al. Diagnosing the stage of 

hepatitis C using machine learning. J Healthc Eng. 

2021;2021:8062410. https://doi.org/10.1155/2021/8062410 

PMid:35028114 PMCid:PMC8748759 

13. Obaido G, Ogbuokiri B, Swart TG, et al. An interpretable 

machine learning approach for hepatitis B diagnosis. Appl 

Sci. 2022;12(21):11127. https://doi.org/10.3390/app 

122111127 

14. Albogamy FR, Asghar J, Subhan F, et al. Decision support 

system for predicting survivability of hepatitis patients. 

Front Public Health. 2022;10:862497. https://doi.org/10. 

3389/fpubh.2022.862497 PMid:35493354 PMCid: 

PMC9051027 

15. Ali N, Srivastava D, Tiwari A, Pandey AK, Sahu A. Predicting 

life expectancy of hepatitis B patients using machine 

learning. In: Proceedings of the 2022 IEEE International 

Conference on Distributed Computing and Electrical 

Circuits and Electronics. 2022. p. 1-4. https://doi.org/10. 

1109/ICDCECE53908.2022.9793025 

16. Gusmanov A, Zhakhina G, Yerdessov S, et al. Review of the 

research databases on population-based registries of 

unified electronic healthcare system of Kazakhstan 

(UNEHS): Possibilities and limitations for epidemiological 

research and real-world evidence. Int J Med Inform. 

2023;170:104950. https://doi.org/10.1016/j.ijmedinf.2022. 

104950 PMid:36508752 

17. Hastie T, Tibshirani R, Friedman J. The elements of 

statistical learning. London: Springer; 2009. https://doi.org 

/10.1007/978-0-387-84858-7 

18. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 

1995;20(3):273-97. https://doi.org/10.1007/BF00994018 

19. Anderson TW. Classification by multivariate analysis. 

Psychometrika. 1951;16(1):31-50. https://doi.org/10.1007/ 

BF02313425 

20. Duda RO, Hart PE, Stork DG. Pattern classification. 

Hoboken: John Wiley & Sons; 2001. 

21. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. 

https://doi.org/10.1023/A:1010933404324 

https://doi.org/10.1016/S0140-6736(03)15108-2
https://doi.org/10.1016/S0140-6736(03)15108-2
https://doi.org/10.1016/S0140-6736(03)15109-4
https://doi.org/10.1016/S0140-6736(03)15109-4
https://www.who.int/publications/i/item/9789240027077
https://www.who.int/publications/i/item/9789240027077
https://doi.org/10.2147/IDR.S363609
https://apps.who.int/iris/handle/10665/206453
https://doi.org/10.1109/ACCESS.2022.3202295
https://doi.org/10.1109/ACCESS.2022.3202295
https://doi.org/10.1007/s10115-023-01851-4
https://doi.org/10.1007/s10115-023-01851-4
https://doi.org/10.3390/bioengineering10040481
https://doi.org/10.3390/bioengineering10040481
https://doi.org/10.1371/journal.pone.0242028
https://doi.org/10.54489/ijtim.v1i2.24
https://doi.org/10.1155/2019/6915850
https://doi.org/10.1155/2021/8062410
https://doi.org/10.3390/app122111127
https://doi.org/10.3390/app122111127
https://doi.org/10.3389/fpubh.2022.862497
https://doi.org/10.3389/fpubh.2022.862497
https://doi.org/10.1109/ICDCECE53908.2022.9793025
https://doi.org/10.1109/ICDCECE53908.2022.9793025
https://doi.org/10.1016/j.ijmedinf.2022.104950
https://doi.org/10.1016/j.ijmedinf.2022.104950
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF02313425
https://doi.org/10.1007/BF02313425
https://doi.org/10.1023/A:1010933404324


8 / 11 Arupzhanov et al. / ELECTRON J GEN MED, 2024;21(6):em618 

22. Chen T, Guestrin C. XGBoost: A scalable tree boosting 

system. In: Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and 

Data Mining. ACM; 2016. p. 785-94. https://doi.org/10.1145/ 

2939672.2939785 

23. Ke G, Meng Q, Finley T, et al. LightGBM: A highly efficient 

gradient boosting decision tree. Adv Neural Inf Process 

Syst. 2017;30:3146-54. 

24. Friedman JH. Greedy function approximation: A gradient 

boosting machine. Ann Stat. 2001;29(5):1189-232. 

https://doi.org/10.1214/aos/1013203451 

25. Freund Y, Schapire RE. A decision-theoretic generalization 

of on-line learning and an application to boosting. J 

Comput Syst Sci. 1997;55(1):119-39. https://doi.org/10. 

1006/jcss.1997.1504 

26. Pines JM, Carpenter CR, Raja AS, Schuur JD. Evidence-

based emergency care: Diagnostic testing and clinical 

decision rules. Hoboken: John Wiley & Sons; 2012. 

https://doi.org/10.1002/9781118482117 

27. Lundberg SM, Allen PG, Lee SI. A unified approach to 

interpreting model predictions. In: Advances in neural 

information processing systems. Newry: Curran Associates 

Inc; 2017.  

28. Yildirim P. Filter-based feature selection methods for 

prediction of risks in hepatitis disease. Int J Mach Learn 

Comput. 2015;5(4):258-63. https://doi.org/10.7763/IJMLC. 

2015.V5.517 

29. Bhargav KS, Thota D, Kumari TD, Vikas B. Application of 

machine learning classification algorithms on hepatitis 

dataset. Int J Appl Eng Res. 2018;13(16):12732-7. 

30. Nivaan GV, Emanuel AWR. Analytic predictive of hepatitis 

using the regression logic algorithm. In: Proceedings of the 

2020 3rd International Seminar on Research of Information 

Technology and Intelligent Systems. 2020. p. 106-10. 

https://doi.org/10.1109/ISRITI51436.2020.9315365 

31. Fedeli U, Grande E, Grippo F, Frova L. Mortality associated 

with hepatitis C and hepatitis B virus infection: A 

nationwide study on multiple causes of death data. World 

J Gastroenterol. 2017;23(10):1866-76. https://doi.org/10. 

3748/wjg.v23.i10.1866 

PMid:28348493 PMCid:PMC5352928 

32. Bollerup S, Hallager S, Engsig F, et al. Mortality and cause 

of death in persons with chronic hepatitis B virus infection 

versus healthy persons from the general population in 

Denmark. J Viral Hepat. 2022;29(8):727-36. https://doi.org/ 

10.1111/jvh.13713 PMid:35633092 

33. Alavi M, Grebely J, Hajarizadeh B, et al. Mortality trends 

among people with hepatitis B and C: A population-based 

linkage study, 1993-2012. BMC Infect Dis. 2018;18(1):215. 

https://doi.org/10.1186/s12879-018-3110-0 PMid:29743015 

PMCid:PMC5944091 

34. El-Serag HB, Kramer J, Duan Z, Kanwal F. Epidemiology and 

outcomes of hepatitis C infection in elderly US Veterans. J 

Viral Hepat. 2016;23(9):687-96. https://doi.org/10.1111/jvh. 

12533 PMid:27040447 

35. Montuclard C, Hamza S, Rollot F, et al. Causes of death in 

people with chronic HBV infection: A population-based 

cohort study. J Hepatol. 2015;62(6):1265-71. 

https://doi.org/10.1016/j.jhep.2015.01.020 PMid:25625233 

36. Ireland G, Mandal S, Hickman M, Ramsay M, Harris R, 

Simmons R. Mortality rates among individuals diagnosed 

with hepatitis C virus (HCV): An observational cohort study, 

England, 2008 to 2016. Euro Surveill. 2019;24(30):1800695. 

https://doi.org/10.2807/1560-7917.ES.2019.24.30.1800695 

PMid:31362807 PMCid:PMC6668288 

37. Wu VC-C, Chen T-H, Wu M, et al. Comparison of 

cardiovascular outcomes and all-cause mortality in 

patients with chronic hepatitis B and C: A 13-year 

nationwide population-based study in Asia. 

Atherosclerosis. 2018;269:178-84. https://doi.org/10.1016/ 

j.atherosclerosis.2018.01.007 PMid:29366991 

38. Emmanuel B, Shardell MD, Tracy L, Kottilil S, El-Kamary SS. 

Racial disparity in all-cause mortality among hepatitis C 

virus-infected individuals in a general US population, 

NHANES III. J Viral Hepat. 2017;24(4):380-8. https://doi.org/ 

10.1111/jvh.12656 PMid:27905175 PMCid:PMC5739320 

39. Bixler D, Zhong Y, Ly KN, et al. Mortality among patients 

with chronic hepatitis B infection: The chronic hepatitis 

cohort study (CHeCS). Clin Infect Dis. 2019;68(6):956-63. 

https://doi.org/10.1093/cid/ciy598 PMid:30060032 PMCid: 

PMC11230463  

40. Lu M, Li J, Zhou Y, et al. Trends in cirrhosis and mortality by 

age, sex, race, and antiviral treatment status among US 

chronic hepatitis B patients (2006-2016). J Clin 

Gastroenterol. 2022;56(3):273-9. https://doi.org/10.1097/ 

MCG.0000000000001522 PMCid:PMC10257940 

41. Yerdessov S, Almukhambetova A, Mambetaliyev M, et al. 

Epidemiological characteristics and climatic variability of 

viral meningitis in Kazakhstan, 2014-2019. Front Public 

Health. 2023;10:1041135. https://doi.org/10.3389/fpubh. 

2022.1041135 PMid:36684964 PMCid:PMC9845948 

42. Midlenko A, Mussina K, Zhakhina G, et al. Prevalence, 

incidence, and mortality rates of breast cancer in 

Kazakhstan: Data from the Unified National Electronic 

Health System, 2014-2019. Front Public Health. 

2023;11:1132742. https://doi.org/10.3389/fpubh.2023. 

1132742 PMid:37143985 PMCid:PMC10153091 

43. Zollanvari A, James AP, Sameni R. A theoretical analysis of 

the peaking phenomenon in classification. J Classif. 2020; 

37(2):421-34. https://doi.org/10.1007/s00357-019-09327-3 

44. Gao B, Wu T-C, Lang S, et al. Machine learning applied to 

omics datasets predicts mortality in patients with alcoholic 

hepatitis. Metabolites. 2022;12(1):41. https://doi.org/10. 

3390/metabo12010041 PMid:35050163 PMCid: 

PMC8781791 

45. Zhang D, Gong Y. The comparison of LightGBM and XGBoost 

coupling factor analysis and prediagnosis of acute liver 

failure. IEEE Access. 2020;8:220990-220003. https://doi.org/ 

10.1109/ACCESS.2020.3042848 

46. Brownlee J. XGBoost with Python: Gradient boosted trees 

with XGBoost and scikit-learn. San Fransisco: Machine 

Learning Mastery; 2018.

  

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1002/9781118482117
https://doi.org/10.7763/IJMLC.2015.V5.517
https://doi.org/10.7763/IJMLC.2015.V5.517
https://doi.org/10.1109/ISRITI51436.2020.9315365
https://doi.org/10.3748/wjg.v23.i10.1866
https://doi.org/10.3748/wjg.v23.i10.1866
https://doi.org/10.1111/jvh.13713
https://doi.org/10.1111/jvh.13713
https://doi.org/10.1186/s12879-018-3110-0
https://doi.org/10.1111/jvh.12533
https://doi.org/10.1111/jvh.12533
https://doi.org/10.1016/j.jhep.2015.01.020
https://doi.org/10.2807/1560-7917.ES.2019.24.30.1800695
https://doi.org/10.1016/j.atherosclerosis.2018.01.007
https://doi.org/10.1016/j.atherosclerosis.2018.01.007
https://doi.org/10.1111/jvh.12656
https://doi.org/10.1111/jvh.12656
https://doi.org/10.1093/cid/ciy598
https://doi.org/10.1097/MCG.0000000000001522
https://doi.org/10.1097/MCG.0000000000001522
https://doi.org/10.3389/fpubh.2022.1041135
https://doi.org/10.3389/fpubh.2022.1041135
https://doi.org/10.3389/fpubh.2023.1132742
https://doi.org/10.3389/fpubh.2023.1132742
https://doi.org/10.1007/s00357-019-09327-3
https://doi.org/10.3390/metabo12010041
https://doi.org/10.3390/metabo12010041
https://doi.org/10.1109/ACCESS.2020.3042848
https://doi.org/10.1109/ACCESS.2020.3042848


 Arupzhanov et al. / ELECTRON J GEN MED, 2024;21(6):em618 9 / 11 

APPENDIX A: SUPPLEMENTARY MATERIALS 

Supplementary Tables 

Supplementary Figures 

SHAP analysis plots 

In Figure A1, Figure A2, and Figure A3, a red dot in plots on the left indicates a high value of the feature for a patient, whereas 

a blue dot represents a low value. Positive SHAP values for red dots show a direct relationship between the feature and the 

outcome, whereas the same values for blue dots imply an inverse relationship. The direction of SHAP values, positive or negative, 

corresponds to an increase or decrease in the likelihood of mortality, respectively. The plot on the right illustrates the feature 

importance on outcome prediction made by the model (a longer bar shows a more significant predictor). 

 

  

Table A1. Confusion matrix for 2016-year cohort test set 

 
Predicted 

Negative Positive 

Actual 
Negative True negative = 3,857 False positive = 1,934 

Positive False negative = 15 True positive = 55 
 

Table A2. Confusion matrix for 2017-year cohort test set 

 
Predicted 

Negative Positive 

Actual 
Negative True negative = 5,376 False positive = 2,425 

Positive False negative = 34 True positive = 76 
 

Table A3. Confusion matrix for 2018-year cohort test set 

 
Predicted 

Negative Positive 

Actual 
Negative True negative = 7,269 False positive = 2,710 

Positive False negative = 52 True positive = 93 
 

Table A4. Confusion matrix for 2019-year cohort test set 

 
Predicted 

Negative Positive 

Actual 
Negative True negative = 8,504 False positive = 4,048 

Positive False negative = 45 True positive = 112 
 

 

Figure A1. SHAP analysis of 2016-specific cohort: (left) SHAP bee swarm plot & (right) bar plot of the mean absolute SHAP values 

for 2016-specific cohort (Source: Authors’ own elaboration) 
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Description of the sub-cohort selection 

 Figure A4 illustrates six distinct patient groups in our dataset. A triangle indicates the date of hepatitis diagnosis, while a circle 

indicates the exit date, which signifies the death of a patient. For instance, we choose the year 2018 as the year of observation. The 

subcohort for 2018 is made out of two patient groups. The first group (case group) includes patients who were diagnosed before 

the beginning of 2018 and died during that year (similar to case 1 in Figure A4, which is identified by a grey line and markers). The 

second group (control group) comprises patients diagnosed before the beginning of 2018 but were still alive during that year 

(similar to case 2 and 4, which are also highlighted by grey lines and markers). Patients who died before the start of 2018 were 

excluded from the subcohort (case 3 in Figure A4). Similarly, those who were diagnosed with hepatitis during 2018 were excluded 

from the subcohort either (case 5 or case 6 in Figure A4). Only patients with available clinical information and who were alive up 

to the end of 2017 were included. Therefore, we chose subcohorts for 2018 and predicted one-year mortality for 50,618 patients 

out of a total of 82,700 patients. It is noteworthy that hepatitis can occur much earlier than the diagnosis date. 

 

 

  

 

Figure A2. SHAP analysis of 2017-specific cohort: (left) SHAP bee swarm plot & (right) bar plot of the mean absolute SHAP values 

for 2017-specific cohort (Source: Authors’ own elaboration) 

 

Figure A4. Description of sub-cohort selection (Source: Authors’ own elaboration) 

 

Figure A3. SHAP analysis of 2019-specific cohort: (left) SHAP bee swarm plot & (right) bar plot of the mean absolute SHAP values 

for 2019-specific cohort (Source: Authors’ own elaboration) 
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Figure A5. The flowchart of stepwise cohort selection (Source: Authors’ own elaboration) 
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