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 Women are prone to low red blood indices due to increased physiological requirements and frequent blood loss 

in menstrual periods. Hypoxia-inducible factors (HIFs) act as master regulators of oxygen and iron balance. In this 

study, the association between P582S HIF-1A polymorphism and red blood indices among women was examined. 
A total of 310 participants were recruited in the study. PCR followed by RFLP technology was used to genotype 

HIF-1A polymorphism. The mean age of participants was 27.0 years, and the mean BMI was 26.4±7.73 kg/m2. Most 

of the participants did not exercise (89.1%), and about 21.1% were current tobacco smokers. Frequency of 582S 

(T) mutant allele was 17.5% while the frequency of 582P (C) wild-type allele was 82.5%. No association was found 

between P582S HIF-1A and hemoglobin level (p=0.37), red blood cell count (p=0.33), hematocrit (p=0.96), mean 
body size (p=0.20), mean corpuscular volume (p=0.34), mean corpuscular hemoglobin concentration (p=0.22), red 

blood cell distribution width (p=0.77), ferritin (p=0.19), and erythropoietin (p=0.15). In addition, no significant 

differences were found in distribution of P582S genotypes according to age of participants, body mass index, 

smoking status, and exercise habits (p>0.05). In conclusion, P582S HIF-1A polymorphism may not be associated 

with red blood indices among women. More studies in other populations are needed to confirm this finding. 

Keywords: HIF-1A, P582S, rs11549465, red blood, hemoglobin, ferritin 
 

INTRODUCTION 

Women are exposed to regular blood loss during 

menstruation [1]. On average, females who menstruate lose 

about 40-80 ml of blood per period. In about 10% of females, 

menstrual bleeding accounts for more than 1.4 mg iron loss per 

day [2]. Women with menorrhagia usually experience fatigue, 

distress, depression and negative social interactions [3, 4] and 

are prone to anemia and tissue hypoxia [1]. Among the 

proposed causes of menorrhagia are infection and hormonal 

changes [5, 6]. Understanding the factors that affect the 

amount of blood loss and hematological homeostasis in 

menstruating women can help improve women’s health during 

their reproductive age [7, 8].  

Hypoxia-inducible factor (HIF-1) is a dimeric protein 

complex that functions as a master oxygen regulator in 

conditions with low oxygen concentrations [9, 10]. HIF-1 

consists of HIF-1A subunit, which is regulated by oxygen 

tension and the constitutively expressed HIF-1B subunit. 

Hydroxylation of HIF-1A subunit by prolyl hydroxylase in the 

normal oxygen state signals its degradation [11]. This 

mechanism plays an important role in regulating HIF 

abundance and oxygen homeostasis [12]. However, when 

oxygen levels decrease, HIF-1A becomes stable and translocate 

from the cytoplasm to the nucleus where it binds to HIF-1B to 

form HIF complex [11]. HIF-1 complex binds to hypoxia 

response elements (HRE) of HIF-1 target genes to induce gene 

expression. Iron-carrying transferrin, transferrin receptors, and 

erythropoietin are among the targets of HIF-1 [13, 14]. HIF-1 

also reduces the expression of hepcidin, a protein that inhibits 

iron transport into cells by activating ferroprotein degradation 

[15]. Studies have shown that prolyl hydroxylase inhibitors 

(HIF-1 stabilizers) can be used as a treatment for anemia in 

patients with chronic kidney disease [16, 17]. Thus, HIF-1 is 

among the factors that might be involved in hematological 

homeostasis in the body [18].  

 P582S HIF-1A (rs11549465; C1772T ) is a single nucleotide 

polymorphism that replaced the C at position 1772 with a T, as 

a result of which proline at position 582 is replaced by a serine 

[19]. A previous study demonstrated that the P582S 

polymorphism is associated with red blood cell indices among 

regular male blood donors by protecting the donors from iron 

deprivation [20]. Other studies showed an association between 

the P582S polymorphism and the higher endurance capacity of 

elite athletes [21] and increased muscle activity in humans [22].  

The beneficial impact of P582S polymorphism on 

hematological homeostasis is attributed to the better iron 

levels and oxygen environment in individuals with the mutant 

allele of this polymorphism. In the current study, we 

hypothesized that the P582S polymorphism may protect 

females from the negative impact of menstrual cycle on red 

blood indices. Therefore, the aim of the current investigation 

was to examine the relationships between the P582S 

polymorphism and blood indices among women. 
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MATERIALS AND METHODS 

Subjects  

Adult females aged between 18 and 40 years were recruited 

from King Abdullah University Hospital to participate in the 

study. Subjects signed a consent form declaring their 

agreement to participate in the study in accordance with the 

policy of the Institutional Review Board of Jordan University of 

Science and Technology. Exclusion criteria include having 

acute or chronic blood disorders such as thalassemia and 

sickle cell anemia, pregnancy or lactation, age of >40 years, and 

use of iron supplements four months before the start of the 

study [23]. The sample size was calculated using G-power 3.1. 

software (Universitat Kiel, Germany). Based on an effect size of 

0.15, alpha of 0.05 and a power of 0.80, a sample size of 270 is 

required. A total of 502 subjects were invited to participate in 

the study: 159 subjects were refused participation and 33 were 

excluded based on selection criteria. A total of 310 participants 

were finally included in the study. The study was conducted 

during the year 2020 including the recruitment of subjects.  

Sample Demographics  

Subjects were asked to fill out a questionnaire that 

collected information about weight, height, age, smoking 

habits, exercise habits, chronic diseases, and supplement use.  

Blood Sampling 

 Blood samples were drawn into ethylene-diamine-tetra 

acetic acid (EDTA) and plain tubes. A portion of EDTA blood 

samples was used for complete blood count analysis (Blood 

Count Analyzers, Abbott Diagnostics, USA). The remaining 

EDTA blood samples were stored at -30 °C for molecular 

analysis. Plain tubes were centrifuged at 500xg for five min and 

serum was transferred to sterile tubes and stored at -80 °C for 

erythropoietin measurements. Ferritin levels were determined 

using an immunoassay analyzer (Elecsys 1020, Roche 

Diagnostics, USA) in the Medical Laboratories of King Abdullah 

University Hospital. 

DNA Extraction  

 DNA was extracted from whole blood taken from EDTA 

tubes using a genomic DNA isolation kit obtained from Zymo 

Research (catalogue number: D3024, Irvine, CA, USA). The 

quality of the extracted DNA was assayed using a Nano-Drop 

spectrophotometer (Thermo Scientific, USA). DNA samples 

were stored at -20 °C until used for further analysis. 

Genotyping of P582S HIF-1A Polymorphism 

 DNA fragment of the P582S HIF-1A polymorphism was 

amplified by PCR using a master mix purchased from Promega 

(USA). The primer sequences were forward 5-GAC TTT GAG TTT 

CAC TTG TTT-3 and reverse 5-ACT TGC GCT TTC AGG GCT TGC 

GGA ACT GCT T-3 [22]. PCR conditions were denaturation at 94 

°C for five min, 34 cycles of denaturation at 94 °C for 60 sec, 

annealing at 55 °C for 60 sec, extension at 72 °C for one min, and 

a final extension step of 10 min at 72°C. This yields a 197 bp 

fragment. The amplified fragment was analyzed using RFLP 

technique and Tsp451 restriction enzyme (catalog number: 

ER1511, Thermo Scientific, USA) as previously described [24]. 

RFLP products were separated by electrophoresis at 120 V for 1 

h using 3% agarose gel. DNA bands were visualized using 

ethidium bromide and UV light. 

Measurement of Serum Erythropoietin Level 

Serum erythropoietin was measured using an ELISA kit 

obtained from Fine Test (catalogue number: EH0357, Wuhan 

Fine Biotech Co, Wuhan, China) according to the manual 

provided by the manufacturer. Changes in optical density at 

450 nm were measured using an ELx800 plate reader (BioTek 

Instruments, Winooski, VT, USA) [25].  

Statistical Analysis 

The relationships between P582S HIF-1A polymorphism 

and hemoglobin levels were analyzed using SNPstat statistical 

program. Serum levels of different parameters were compared 

between the different genotypic groups using the ANOVA test. 

Categorical variables were compared using the Chi-square test. 

The distribution of the different P582S HIF-1A genotypes was 

examined for their concordance with the Hardy-Weinberg 

equilibrium. A p less than 0.05 was used to indicate a significant 

difference. 

RESULTS 

310 women (18-40 years old) were recruited to participate 

in the study (Table 1). According to the sample, the mean age 

was 27.03 years, and the mean BMI was 26.4±7.73 kg/m2. Most 

of the participants did not exercise (89.1%), and about 21.1% 

were current tobacco smokers. 

The distributions of the different genotypes and alleles of 

P582S SNP among the sample are shown in Table 2. The 

frequency of the wild type C allele encoding proline was 82.4%, 

while the frequency of the T allele encoding serine was 17.6%. 

The majority of participants carried the CC genotype (69.0%), 

followed by CT genotype (26.8%) and the TT genotype (4.2%).  

Table 1. Demographic characteristics of participants 

Variable n (%) 

Mean age 27.03±6.46 

Age group  

18-30 208 (67.1) 

>30-40 102 (32.9) 

Body mass index (BMI)  

<18.5 14 (4.5) 

18.5-24.9 155 (50.0) 

25-29.9 75 (24.2) 

>30 66 (21.3) 

Mean BMI 26.40±7.73 

Smoking  

Yes 66 (21.2) 

No 244 (78.8) 

Exercise  

Yes 34 (10.9) 

No 276 (89.1) 
 

Table 2. Distribution of P582S polymorphism in examined 

population 

P582S* n (%) 

Genotypes 

CC 214 (69.0) 

CT 83 (26.8) 

TT 13 (4.2) 

Alleles 
C 511 (82.4) 

T 109 (17.6) 

Note. *Hardy Weinberg equilibrium: Chi-squared value=1.795 & 

p=0.180 
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Table 3 shows the distribution of P582S polymorphism in 

different world populations. P582S polymorphism is relatively 

common in most populations with frequencies ranging from 

6.7% to 17.5%. 

Table 4 shows the distribution of different P582S 

genotypes according to demographic variables (Table 4). No 

significant differences were found in the distribution of P582S 

genotypes according to age of participants, body mass index 

(BMI), smoking status, and exercise habits (p>0.05). 

To examine the association between P582S polymorphism 

and hemoglobin among participants (Table 5), the sample was 

divided into normal hemoglobin level (Hb≥12 g/dL) and low 

hemoglobin levels (Hb<12 g/dL). No association was found 

between P582S genotypes and hemoglobin levels (p=0.37). In 

addition, no association was found between the distribution of 

P582S alleles and hemoglobin levels (p=0.24). 

Relationships between different blood parameters and the 

P582S are shown in Table 6. There are no effects of the P582S 

SNP genotypes on the different blood parameters (p>0.05). 

These includes red blood cell count, hematocrits, mean 

corpuscular volume (MCV), mean corpuscular hemoglobin 

(MCH), mean corpuscular hemoglobin concentration (MCHC), 

red cell distribution width (RDW), platelet count (PLT), 

erythropoietin, ferritin, and count of the different types of 

white blood cells. 

DISCUSSION 

In the current study, the association of P582S HIF-1A 

polymorphism with blood parameters among women was 

examined. The results showed no association between P582S 

HIF-1A polymorphism and red blood indices among women.  

HIF-1A encodes HIF-1A subunit that is part of the hypoxia-

inducible factor (HIF-1), which plays an essential role in 

regulating oxygen utilization under hypoxic conditions [9]. HIF-

1 is known to be involved in the regulation of hematopoiesis via 

interactions with erythropoietin, transferrin and hepcidin [13, 

26]. Therefore, we hypothesized in the current study that such 

polymorphism might also affect red blood indices among 

women who are susceptible to blood loss due to menstruation. 

The results showed no association between red blood indices 

and P582S HIF-1A polymorphism among women. The results 

also showed no association between the low hemoglobin 

phenotype and all genotypes and alleles of P582S HIF-1A 

polymorphism. Furthermore, there are no effects of P582S HIF-

1A genotypes on serum erythropoietin and ferritin levels. These 

findings indicate that P582S HIF-1A polymorphism might not be 

important for homeostasis in healthy menstruating women.  

A previous study showed that P582S HIF-1A polymorphism 

was associated with better red blood indices and iron 

homeostasis after blood loss among male blood donors but not 

among female blood donors [20]. Male donors with the 

homozygous wild type allele showed significantly better blood 

indices of hemoglobin, hematocrit, ferritin, and mean 

corpuscular hemoglobin than male donors with the mutant 

allele [20]. Although the number of women included in [20] was 

very small (n=12) and blood donation is not comparable to 

menstrual blood loss, the present study findings, and those of 

[20] suggest that the impact of P582S HIF-1A polymorphism on 

blood indices might be sex-specific, being associated with 

blood indices in males. Thus, testing for P582S HIF-1A 

polymorphism to predict the blood indices outcomes after 

Table 3. P582S frequencies among different population 

Population Percentage (%) Reference 

Jordan 17.5 Current study 

Italy 15.4 [20] 

Iran 10.6 [38] 

USA 12.9 [39] 

Korea 10.5 [40] 

Turkey 14.7 [41] 

China 11.0 [42] 

Russia 7.5 [43] 

Mexico 10.9 [44] 

Japan 6.7 [46] 

Poland 7.0 [53] 
 

Table 4. Distribution of different genotypes of P582S 

polymorphism according to different demographic variables 

Variable CC CT TT p 

Age group     

18-30 141 (67.8) 58 (27.9) 9 (4.3) 
0.795 

>30-40 73 (71.6) 25 (24.5) 4 (3.9) 

Body mass index     

<18.5 9 (64.3) 5 (35.7) 0 (0.0) 

0.913 
18.5-24.9 106 (68.4) 41 (26.5) 8 (5.2) 

25-29.9 51 (68.0) 22 (29.3) 2 (2.7) 

>30 48 (72.7) 15 (22.7) 3 (4.5) 

Smoking     

Yes 43 (65.2) 21 (31.8) 2 (3.0) 
0.563 

No 171 (70.1) 62 (25.4) 11 (4.5) 

Exercise     

Yes 20 (58.8) 12 (35.3) 2 (5.9) 
0.443 

No 194 (70.3) 71 (25.7) 11 (4.0) 
 

Table 5. Association of Hb levels with P582S polymorphism 

Genotype 
Controls: n (%) 

Hb>12.0 g/dL 

Cases: n (%) 

Hb<12.0 g/dL 
p 

C/C 169 (67.9) 45 (73.8) 
0.37 

C/T 68 (27.3) 15 (24.6) 

T/T 12 (4.8) 1 (1.6)  

Allele C 406 (81.5) 105 (86.1) 
0.24 

Allele T 92 (18.5) 17 (13.9) 
 

Table 6. Correlation of P582S with hematological parameters 

Parameter* 
Mean±SD 

p 
C/C C/T T/T 

WBCs (cell×103/µL) 7.39±2.00 7.44±2.90 8.11±3.00 0.56 

RBCs (cell×106/µL) 4.75±0.38 4.70±0.43 4.60±0.36 0.33 

Hct (%) 39.52±4.77 39.38±3.40 39.56±3.32 0.96 

MCV (fL) 82.77±8.25 84.07±7.47 85.98±6.20 0.20 

MCH (pg) 27.53±2.97 27.88±2.73 28.54±2.48 0.34 

MCHC (g/dL) 32.97±1.95 36.74±32.62 33.18±1.38 0.22 

RDW (%) 14.09±1.49 13.97±1.53 14.18±1.36 0.77 

Platelets (×103/µL) 302.40±72.7 295.9±72.80 280.3±84.5 0.49 

Lymphocytes (%) 34.03±9.70 32.67±9.59 30.65±9.91 0.30 

Monocytes (%) 6.54±1.79 7.14±4.44 6.29±1.64 0.20 

Neutrophils (%) 56.99±10.24 58.03±10.91 60.0±10.96 0.48 

Eosinophils (%) 1.81±1.48 1.63±1.32 2.49±3.50 0.18 

Basophils (%) 0.59±0.33 0.55±0.31 0.56±0.33 0.65 

Erythropoietin (pg/ml) 149.0±129.6 172.3±133.5 107.2±57.40 0.15 

Ferritin (pg/mL) 20.68±18.38 20.73±18.18 18.03±17.78 0.89 

Note. *WBCs: White blood cells; RBCs: Red blood cells; Hct: Hematocrit; 
MCV: Mean corpuscular volume; MCH: Mean corpuscular hemoglobin; 

MCHC: Mean corpuscular hemoglobin concentration; & RDW: Red cell 

distribution width 
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blood donations/blood loss could be useful in males but not in 

females. It noteworthy that the effect of P582S HIF-1A 

polymorphism for oxygen utilization has been shown to be also 

beneficial in other situations [27]. For example, it has been 

shown that weightlifters, long-distance runners, and high-

performance athletes are more likely to have the mutated 

allele for the P582S polymorphism [21]. In addition, P582S 

polymorphism was found to be associated with endurance 

training responses in women [28] and subjects’ responses to 

hypoxia training [29]. 

 The clinical significance of P582S polymorphism extends 

far beyond the efficient use of oxygen. It was found that P582S 

polymorphism is associated with an improved survival rate of 

cancer cells and an improvement in their proliferation and 

expansion [30]. P582S polymorphism has been shown to be 

associated with breast cancer [31], prostate cancer [32], 

gastrointestinal tract cancer [33], coronary artery disease [34], 

and diabetes complications [35-37].  

P582S polymorphism is common, and its frequency has 

been reported in several populations. In the current study 

conducted in Jordan, the frequency of the mutant T allele was 

17.5%. This frequency is similar to that of the Turks, Italians, 

Iranians, Chinese, Koreans, and the Americans [20, 38-42]. A 

relatively low frequency of the mutant allele was reported in 

Japanese, Polish, and Russian populations [43-46].  

In the current study, there were no differences in the 

distribution of P582S polymorphism when the sample was 

stratified by age, BMI, smoking and exercise. In agreement with 

the present findings, no association between P582S 

polymorphism and parameters such as age and BMI was 

reported in previous studies conducted in Hungary, China, and 

Mexico [47-49]. However, a study in Caucasians showed a slight 

and significant enrichment of PP genotype in male athletes 

compared to controls [21]. In the present investigation, about 

11% of the study sample reported exercise training. In a 

systematic review, exercise training was shown to improve 

bone mineral density, muscle strength, balance, function, and 

quality of life in postmenopausal women with osteoporosis via 

mechanisms that involved HIFs [50, 51]. Therefore, the 

association between P582S polymorphism and exercise 

training needs to be explored in a future study with a better 

representation of exercise training among the sample.  

Study Limitations, Future Directions, and Clinical 

Implications 

A limitation of the current study is that the subjects were 

healthy females. It is strongly recommended that females with 

anemia and other ages be included in future investigations. In 

addition, the study is cross-sectional in design, and therefore, 

it is recommended that findings be confirmed using a cohort or 

randomized clinical study design. Moreover, the study did not 

collect data regarding menses and the time of sampling 

relative to menstrual cycle. Furthermore, sexual and 

reproductive hormones cause differences in iron absorption, 

storage, and retention. These are further influenced by age, 

lifestyle, menstruation, pregnancy, lactation, and iron intake. A 

more comprehensive study that considers such factors could 

give us a better understanding of the relationship between 

P582S HIF-1A polymorphism and hematological indices among 

females. The current findings should be confirmed in other 

populations because the population’s genetic background 

may have an influence on the results of association studies [52, 

53].  

CONCLUSION 

In conclusion, P582S HIF-1A polymorphism may not be 

associated with red blood indices among women. More studies 

in other populations are needed to confirm this finding. 
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