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 Over the last year, SARS-CoV-2 caused the infection of more than 80 million people and about 1.8 million deaths. 
Since the emergence of the first cases in China, this virus has been the focal point of the scientific community and 
represented the main subject of a large number of research publications. It has been observed that the 
symptomatology is broad, varying from asymptomatic/mild manifestations to more severe stages of illness, in 
some cases leading to multi-organ failure and death. Although WHO announced PHEIC since January 30, and 
invited the researchers to quickly find solutions for diagnosis, monitoring, and treatment, there are currently no 
COVID-19 specific therapeutic drugs or vaccines clinically approved. This led to losses on multiple levels, such as: 
high number of deaths, health/financial crisis, job loss, school closures, etc. For these reasons, there is an urgent 
need to properly understand all aspects regarding this virus in order to successfully develop strategies to manage 
and stop this pandemic. Hence, this paper analysis the current knowledge and provides a comprehensive overview 
on this novel coronavirus. 
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INTRODUCTION 

It’s been a year since the new coronavirus emerged in 
Wuhan, China, and spread rapidly worldwide. So far, World 
Health Organization (WHO) situation reports mention that 
there has been reached a total number of more than 80 million 
SARS-CoV-2 infected persons, of which about 1.8 million 
people have died (as of December 28). 

Coronaviruses (CoVs) are a large family of enveloped 
viruses, characterized by their surface covered with spikes, 
resembling with a crown or solar corona. They belong to the 
Coronavirinae subfamily of the Coronaviridae family, within 
the Nidovirales order [1]. CoVs are further taxonomically 
classified into four coronavirus genera: α-CoVs, β-CoVs, γ-CoVs, 
and δ-CoVs, which are then divided into subgenera or lineages. 
For example, β-CoV genus is recognized to comprise four 
phylogenetic lineages (A, B, C and D), of whom the A lineage of 
β-CoVs has been the focus for CoV packaging studies [1,2]. All 
these genera can broadly infect various mammals, while only 
the last two genera (i.e., γ-CoVs and δ-CoVs) can also infect 
birds [2,3].  

Until now, seven CoVs (both low and highly pathogenic 
viruses), from α-CoVs and β-CoVs genera, have been identified 
to infect humans, leading to respiratory, hepatic, gastro-
intestinal, and neurological diseases [2-5]. Starting with 1960, 
the first two human coronaviruses (HCoVs) have been 
discovered in the α-CoVs (HCoV-229E) and β-CoVs (HCoV-OC43) 
genera, usually causing mild to moderate upper respiratory 
tract infections [6]. However, for immunocompromised or 

elderly patients, CoV infections can sometimes escalate into 
more serious stages of disease. 

In November 2002, a novel and more serious strain of β-
HCoV (SARS-CoV), originated in bats, generated a severe 
pneumonia outbreak that spread from South China and 
reached 37 countries [7]. SARS-CoV led to more than 8000 cases 
of infected people, and an approximated mortality rate of 10% 
[8]. The SARS-CoV pandemic was finally extinguished in 2004, 
by drastic public health measures. 

Due to research interest triggered by the impact generated 
by the SARS-CoV outbreak, in the same year, another HCoV has 
been identified in the α-CoVs genera (namely HCoV-NL63), and 
a year later, in 2005, one in β-CoVs genera (namely HCoV-HKU1) 
[9]. However, both of these new HCoVs were classified of low 
pathogenicity, as also seen for HCoV-229E and HCoV-OC43, 
which led to only moderate illnesses like common colds. 

Seven years later, in June 2012, another noteworthy 
pathogenic HCoV (i.e., MERS-CoV) infection caused an 
outbreak of severe pneumonia, which started in Saudi Arabia 
[10]. As in the case of SARS-CoV, MERS-CoV originated in bats 
and was transmitted to humans probably through dromedary 
camels, as intermediary reservoirs [11]. Although, it was not 
characterized by such high human-to-human transmission as 
SARS-CoV, MERS-CoV reached about 27 countries, infecting 
more than 2494 persons, and registered a fatality rate as high 
as 36% [11]. 

In December 2019, the Chinese city of Wuhan has been 
confronted with several patients presenting pneumonia 
caused by an unidentified microbial infection. Among the 
spectrum of various severity flu-like symptoms reported, there 
have been mentioned fever, cough, dyspnoea and acute 
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respiratory distress syndrome (ARDS) [5]. Shanghai Public 
Health Clinical Centre has revealed the full virus genomic 
sequence analysis of five patients hospitalized with this new 
pneumonia, discovering a β-CoV strain unidentified previously, 
which has an identity of 88% with typical sequence structure of 
two bat-derived SARS-like CoVs (i.e., bat-SL-CoVZC45 and bat-
SL-CoVZXC21) and an identity of 50% with MERS-CoV [12]. 
International Virus Classification Commission has named this 
novel β-CoV strain as SARS-CoV-2 [5]. Soon, the 
epidemiological studies revealed that a majority of infected 
persons are related to the Huanan Seafood Wholesale Market 
(patients were deliverymen or sellers in the market), which led 
to the possible conclusion that the virus suffered animal-to-
human transmission [13]. However, human-to-human 
transmission was also confirmed after 15 health-care 
practitioners, from Wuhan hospital, were infected due to 
contact with infected patients [14]. At the end of January 2020, 
WHO officially named this new pathogen as 2019-nCoV, and the 
novel infectious disease as COronaVIrus Disease 2019, or 
COVID-19, was declared as Public Health Emergency of 
International Concern (PHEIC) [2,15]. COVID-19 has spread 
worldwide with an alarming escalating rapidity, challenging 
humans to face a battle with an enemy whose weaknesses are 
not yet known. Although SARS-CoV-2 has a great genetic 
similarity with SARS-CoV and MERS-CoV, it has been shown to 
present a lower pathogenicity, but a higher transmissibility. 
Thus, the reproduction number (R0), which is a metric for 
transmissibility, reported for SARS, MERS and seasonal 
influenza viruses was: 3.1-4.2 [16,17], <1.0 [18,19], and 1.8 [20] 
respectively; while the R0 for SARS-CoV-2 was seen to range 
from 2.8 to 5.5 globally [21], while a medium R0 of 4.5±1.44 was 
reported for European Union [22].  

Since this new type of coronavirus emerged, thousands of 
research papers have been published. All these resources are 
important building blocks towards finding efficient methods to 
deal with this pandemic. In this regard, the present paper aims 
to offer a comprehensive overview on the current knowledge 
on this topic, thus helping the readers to find summarized in 

one place the most important aspects regarding virus structure 
and genomic analysis, infection mechanism and replication, 
virus strategies to evade host’s immune system recognition, 
infected organs and clinical manifestation. It is hoped that the 
information analysed here will represent a valuable starting 
point for future studies. 

STRUCTURE AND GENOME OF SARS-CoV-2 

Three weeks after the hospitalization of patient 0 in China, 
several research groups analysed the viral strain isolated from 
patients airway epithelial cells and revealed the sequencing of 
SARS-CoV-2 genome [23,24]. The phylogenetic tree has been 
presented in several papers [25,26]. From these studies, the 
genomic similarities with other known CoVs, in general, and 
with SARS-CoV, in particular, are very evident. Thus, it has been 
shown that the closest relatives of the newly identified 2019-
nCoV are several bat-derived CoVs, like bat-CoV-RaTG13 (with 
~96.3% sequence similarity), followed by two bat SARS-like 
CoVs (with ~88% sequence similarity): bat-SL-CoVZC45 (NCBI 
accession no MG772933) and bat-SL-CoVZC21 (NCBI accession 
no MG772934) [12,23,27]; while sequence similarity with SARS-
CoV is ~79% and MERS-CoV is ~50% [12,15,28,29]. The genomic 
structure is characteristic to the lineage B, from β-COVs genus, 
and comprise a positive-sense single-stranded ribonucleic acid 
(+ssRNA) genome, surrounded by a membrane envelope 
[12,28]. As seen for other identified CoVs RNA genomes, which 
have sizes varying from 26 000 to 37 000 bases [7,30], the SARS-
CoV-2 genome length was also identified to fall within these 
parameters, containing 29 891 nucleotides (GenBank no. 
MN908947) [28]. These are arranged into 14 open reading 
frames (ORFs), which encode 27 proteins responsible for viral 
RNA synthesis [7]. Thus, the SARS-CoV-2 genome structure is 
comprised of a 5’-cap and a 3’-poly(A) tail, as follows: 5’ - 
Leader untranslated region (UTR) - Replicase - Spike (S) - 
Envelope (E) - Membrane (M) - Nucleocapsid (N) - 3’ Trailer UTR 
(Figure 1) [7,31]. The first two functional ORFs (ORF1a and 

 
Figure 1. The genomic structure of SARS-CoV-2 
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ORF1ab) are situated at the 5’-cap of the genome and 
constitute approximately 67% of viral RNA. These ORFs encode 
two large polyproteins (pp1a, pp1ab), which are proteolytically 
cleaved into 16 non-structural proteins (Nsps), which are Nsp1-
16, and have been reported to constitute the replicase-
transcriptase complex (RTC) [28]. The RTC includes several 
enzymes, such as papain-like protease (PLpro)/adenosine 
diphosphate-ribose 1’-phosphatase (ADRP) - Nsp3, 
chymotrypsin-like protease (3CLpro) - Nsp5, primase complex 
- Nsp7/8, RNA-dependent RNA polymerase (RdRp) - Nsp12, 
nucleoside-triphosphatase (NTPase)/helicase (HEL)/RNA 5’-
triphosphatase - Nsp13, N7 methyl-transferase (MTase)/3’-5’-
exoribonuclease (ExoN) - Nsp14, endoRNAse - Nsp15, and 2’-O-
ribose methyltransferase (2’-O-MT) - Nsp16 [32-34]. These Nsps 
possess various functions: Nsp1 inhibits host antiviral 
response, Nsp3/4/6 complex is responsible for viral replication, 
Nsp7/8 complex is part of RNA polymerase, Nsp9 contributes to 
ssRNA binding, Nsp10 is necessary for methyltransferase 
activity of Nsp16, Nsp12 catalyses the replication of viral RNA, 
ExoN of Nsp14 is responsible for proofreading of viral genome, 
Nsp15 contributes both to replication, as well as blocking the 
host’s immune system [32,33]. 

The other 33% at the 3’-terminus of SARS-CoV-2 viral 
genome consists of 13 ORFs, which are expressed from 9 
predicted subgenomic RNAs (sgRNAs). Among these, four 
important structural proteins, in an invariable sequence order, 
are: Spike (S) - Envelope (E) - Membrane (M) - Nucleocapsid (N) 
(which contribute to viral structure and infection), and nine 
interspersed accessory proteins (ORF3a, ORF3b, ORF6, ORF7a, 
ORF7b, ORF8, ORF9b, ORF9c and ORF10), some of which 
present essential functions in viral pathogenesis [5,34]. 

The spike glycoproteins (Mw ~ 150 kDa) are multifunctional 
molecular machines, displayed on the virus surface in a corolla 
assembly, and are known to play an essential role in virus 
attachment to host cell receptors, mediating entry and tissue 
tropism (Figure 2a). They are composed of three intertwined 
polypeptide protomers (a large ectodomain, a single-pass 
transmembrane (TM) protein anchor and a short intracellular 
tail) which, depending on the CoV species, possess different 3D 
conformations and lengths varying between 1100-1600 amino 
acid residues (Figure 2b) [1,7,35]. The ectodomain of S protein 
comprises two functional subunits (S1 and S2), with roles in 
receptor recognition, proteolytic cleavage and fusion with host 
cell membrane [36]. S1 subunit includes two independently 
folded domains, N- and C-terminal domains (NTD and CTD), of 

which CTD serves as the receptor-binding domain (RBD) [37]. 
RBD facilitates recognition and direct attachment of S domain 
B (SB) to the angiotensin-converting enzyme 2 (ACE2) cell 
receptors [7,38]. Also, S1 subunits stabilize the S2 pre-fusion 
state [38]. S2 subunit contains the fusion peptide (FP), two 
heptad-repeat 1 and 2 domains (HR1 and HR2), TM and 
cytoplasmic (CP) regions [1,28,39]. S protein requires a two-
step sequential mechanism for activating its fusion potential 
[40]. Thus, a protease cleavage occurs first at the S1 and S2 
subunits boundary, and a second cleavage at S2’ site, located 
in the FP vicinity [37]. This cleavage triggers extensive 
irreversible conformational changes (pre- and post-fusion), 
and has been reported to be facilitated by one or several host 
cellular proteases, like human airway trypsin (HAT)-like 
protease, transmembrane protease serine 2 (TMPRSS2), 
TMPRSS4, furin, and cathepsins [41-47]. As a result, the 
synergistic activity of RBD and the presence of host proteases 
determine the complex process of CoV entry into target cells. 
While S2 subunit has been seen to be highly conserved, 
presenting a 99% similarity with that of SARS-CoV S2 [12,28], 
overall identity between S protein of SARS-CoV-2 and SARS-
CoV is about 87% [34]. 

The E protein (Figure 2c) is a short, integral membrane 
pentameric protein, with a 3D structure composed of five 
subunits, each having a large hydrophobic TM domain of seven 
α-helices and eight loops, flanked by a short hydrophilic 
amino-terminal (NTD) and a long carboxyl (CTD) one [48]. The 
hydrophobic TM domains oligomerise and modulate the 
formation of ion conductive channels, which are important for 
pathogenesis. It has been reported that E protein of SARS-CoV-
2 is highly conserved, being identical to that of other bat CoVs 
(ZXC21, ZC45, RaTG13) and pangolin CoV (MP798) [49]. Also, the 
E protein plays an important role in virus life cycle, such as in 
viral genome assembly, envelope formation and virus release 
[50,51]. Finding ways to inhibit the ion channels might lead to 
developing anti-SARS-CoV-2 drugs [48]. 

The M glycoprotein is also highly conserved and more 
widely spread within the virus membrane than E protein. It 
consists of three TM domains flanked by a short NH2-terminal 
domain (ectodomain), exposed outside the virion surface, and 
a long COOH-terminal cytoplasmic domain inside 
(endodomain) (Figure 2d) [11,52,53]. The endodomain 
globular structure is compact, thus only a short carboxy-
terminal tail allows binding with other proteins [11]. The M 
proteins have an important role in virus assembly and, along 

 
Figure 2. SARS-CoV-2 structure (a) and component proteins: S protein (b), E protein (c), M and N proteins (d) 
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with S and E proteins, are encapsulated in a membrane 
envelope [11]. 

Inside the membrane envelope, the nucleocapsid 
phosphoprotein is formed through binding between N protein 
and genomic RNA (gRNA). N protein contains two independent 
structural modules (NTD and CTD), followed by an acidic 
carboxy-terminal domain (N3) (Figure 2d). Between NTD and 
CTD is present a central linker serine- and arginine-rich domain 
(SRD). NTD is responsible for RNA-binding, CTD is capable of 
self-association, while the central linker SRD interacts with the 
M protein [54]. N plays essential roles in packaging the +ssRNA 
into a helical ribonucleoprotein (RNP) complex [55], proper 
development of the protective capsid and full virus structure 
[1,7,35]. During viral infection, N protein is the most abundantly 
distributed in host cells cytoplasm and, in order to facilitate 
efficient virus transcription and replication, it must easily 
disintegrate to release the gRNA [55].  

Although the newly identified virus has been shown to 
present remarkable homology with previous SARS-CoV, is 
suspected that it suffered some function mutations, making it 
more transmissible and infectious. The similarity between the 
two SARS viruses is in regard to their ORF1ab (which encode 16 
Nsps), as well as the four common structural proteins (S, E, M, 
N). However, S protein of SARS-CoV-2 has only 87% similarity 
with that of SARS-CoV, while the other three structural proteins 
(E, M, and N) have more than 94% identity to their SARS-CoV 
homoloques [34]. Also, other differences are related to the 
accessory proteins. Thus, SARS-CoV-2 has 85.1% similarity in 
ORF3a with SARS-CoV, while ORF3b is only 9.5% similar, having 

only 22 amino acids in SARS-CoV-2, in contrast with a longer 3b 
protein of 154 amino acids of SARS-CoV [34,56]. Also, the ORF8 
of SARS-CoV-2 is intact, with only 45.3% similarity with ORF8a 
and 8b of SARS-CoV. In addition, SARS-CoV-2 possesses ORF10, 
which is not detectable in SARS-CoV [34]. 

SARS-CoV-2 ENTRY INTO HOST CELLS AND 
REPLICATION 

The proposed mechanism of infection used by SARS-CoV-2 
has been seen to be similar with other β-CoVs, among which 
SARS-CoV also. However, subtle genetic changes exhibited by 
this new CoV may have significantly affected its pathogenicity. 
CoVs make use of their homotrimeric spikes S glycoproteins 
(i.e., S1 and S2 subunits in each spike monomer) to attach to a 
specific receptor of the host’s cells and facilitate subsequent 
virus entry (Figure 3). This cellular receptor is known to be 
ACE2 [15]. Upon binding to ACE2, S protein is proteolytically 
cleaved by host proteases at the boundary between S1 and S2 
subunits [1]. This cleavage leads to a conformational shift that 
triggers S2 activation and a second cleavage at S2’ site, located 
upstream FP. Further, FP penetrates the cell membrane, 
facilitating fusion. Cryo-EM studies revealed that RBD within 
the S1 subunit is the key functional component through which 
the binding between SARS-CoV-2 and ACE2 is made [57]. So, 
RBD plays a critical role in the viral life cycle, enabling the cell 
fusion and transport of the viral genetic material inside the 
host cell. Although it has been reported that SARS-CoVs have 

 
Figure 3. SARS-CoV-2 entry into the host’s cell and virus life cycle. Viral S protein, activated by TMPRSS2, attaches to cellular ACE2 
receptor and facilitates entry into host cell. Genomic RNA is released and the replication/translation starts. The assembly of viral 
particles and gRNA into virions takes place in ERGIC. Newly formed virions are released through exocytosis 
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similar infection mechanisms, SARS-CoV-2 RBD exhibits higher 
binding affinity than SARS-CoV, which may explain the higher 
rate of human-to-human transmission [58,59]. A good 
knowledge of host’s ACE2 receptors and their targets might 
significantly contribute to drug development. Also, inhibiting 
virus binding and entering the cell might represent another 
path to efficient drug discovery. Cellular proteases like HAT-
like protease, TMPRSS2, furin, and cathepsins are involved in 
CoVs mechanism of entering host cell, by splitting the S protein 
to further penetrate the cell membrane [43,60]. Thus, the 
development of inhibitors of these proteases might represent 
efficient targets for SARS-CoV-2, as has been seen in HIV/AIDS 
treatment. For example, a recent study published by Hoffmann 
and co-workers describes the serine protease TMPRSS2 
contribution to S protein priming for entering the cell and 
proposes, as a treatment option, a clinically approved 
TMPRSS2 inhibitor to block S protein entry [61]. However, 
further investigations on S proteins and the RBD-ACE2 
interaction may reveal essential insights for drug development 
and vaccine design to fight against COVID-19. 

After virus entry into the cell, there are several aspects that 
need to be considered. First, the enzymes present on the 
surface of the host cells cleave the ACE2 receptors, shedding 
them into the extracellular environment, which has been 
reported to increase permeability of pulmonary capillaries and 
damage alveoli [62]. Second, the virus needs to replicate its 
RNA in order to survive. However, as has been seen for SARS-
CoV, the SARS-CoV-2 replication mechanism is very complex 
and until now insufficiently understood, thus hampering the 
development of efficient strategies to fight against this type of 
infection [63]. In order to replicate, SARS-CoV-2 is transported 
to endosomes and then it releases its gRNA into the cytoplasm. 
Here, it uses the host cells ribosomes to create its own viral 
proteins [5]. In addition to the replication of the progeny gRNA, 
there are also numerous intermediate negative-strand 
products that serve as mRNAs for various sgRNAs [11]. These 
sgRNAs are translated into the viral structural (S, E, and M) and 
accessory proteins, which are further insulated in the 
endoplasmic reticulum, and then transported to the 
endoplasmic reticulum-Golgi intermediate compartments 
(ERGIC) [64]. Nucleocapsid is formed by assembling of 
replicated gRNA and N protein and also transported to ERGIC. 
Here, the new viral particles are assembled into small vesicles. 
Then, the viral particles fuse with the cell membrane and are 
released through exocytosis. In this process, the infected cells 
are damaged, and the virus travels to infect other cells. Since 
Nsps have an important role for SARS-CoV-2 replication 
mechanism, it is anticipated to be potential targets for 
emerging strategies against this viral infection [11]. 

IMMUNE SYSTEM RESPONSE TO SARS-CoV-2 
INFECTION 

In general, human body’s first reaction to the presence of 
viruses is mediated by innate immune system, that can detect 
the differences between cellular molecules and pathogens, 
and alerts host cells. Specific Pathogen-Associated Molecular 
Patterns (PAMPs) of viral components and intermediate 
replication products (such as: glycoproteins, lipoproteins and 
other molecules which are produced during the life cycle of the 
virus, but which are not normally present among usual cellular 
components) and Damage-Associated Molecular Patterns 

(DAMPs), triggered by cell damage/death, are detected by 
Pattern Recognition Receptors (PRRs) present in/on host 
antigen presenting cells (APCs), like dendritic cells, monocytes, 
macrophages, and neutrophils [65]. These PRRs can be 
membrane-bound (such as Toll-like receptors (TLRs)) and 
cytoplasmic (such as Nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLRs) and Retinoic acid-
inducible gene I (RIG-I)-like receptors (RLRs)), leading to 
different biological signalling that further activates an antiviral 
response [30,66].  

TLRs are a class of ten sensors bound on cell membranes, 
like cell surface receptors (TLR1, TLR2, TLR4, TLR6, TLR10) and 
endosomal receptors (TLR3, TLR7, TLR8, and TLR9), which can 
detect viral PAMPs and, by recruiting adapter proteins (like 
myeloid differentiation primary response 88 (MyD88) protein, 
toll-interleukin 1 receptor (TIR) domain containing adaptor 
protein (TIRAP), TIR-domain containing adapter inducing 
interferon-β (TRIF), and TRIF-related adaptor molecule (TRAM)) 
in immune cells, propagate the antigen-induced signal 
transduction pathway. The signalling pathways can be MyD88-
dependent (leading to NF-kB activation and subsequent pro-
inflammatory cytokines release) or TRIF-dependent (triggered 
by dsRNA and leading to activation of interferon regulatory 
factor 3 (IRF3), production of Type 1 Interferon (T1-IFN), and 
activation of late-phase NF-kB). For example, TLR4 can detect 
S protein of CoVs and, through the MyD-dependent signalling 
pathway, triggers the release of pro-inflammatory cytokines 
[67], while TLR3 can recognize dsRNA of CoVs and, through TRIF 
adapter protein, further leads to increased release of pro-
inflammatory cytokines (like IFN-β) via phosphorylation and 
nuclear translocation of IRF3 and activation of NF-kB 
transcription factors [64,68]. 

RLRs are sensors present in cell’s cytoplasm (like RIG-I and 
melanoma differentiation-associated 5 (MDA5) receptors) that 
recognize PAMPs of viral RNA, and trigger antiviral signalling 
through their activated caspase-recruitment domains (CARDs) 
and CARDs of mitochondrial antiviral signalling proteins 
(MAVSs). This binding further leads to the recruitment of TNF 
receptor-associated factor 3 (TRAF3) and the enzymes complex 
between inhibitor of NF-kB kinase subunit epsilon (IKKɛ) and 
TANK-binding kinase 1 (TBK1), which induces the activation of 
several transcription factors, like interferon regulatory factor 3 
(IRF3) and IRF7. IRF3 and IRF7 promote transcription of T1-IFN 
(like IFN-α and IFN-β) and T3-IFN (IFN-λ), which further 
activates Janus kinases-signal transducers and activators of 
transcription (JAK-STAT) signalling pathway. Activation of JAK-
STAT signalling pathway determines the transcription of 
multitude IFN-stimulated genes (ISGs), that further intensify 
the IFN production [68,69]. 

NLRs are able to detect the production of reactive oxygen 
species (ROS) [70,71]. The ligand recognition determines the 
NLR binding with the adaptor protein Apoptosis-associated 
speck-like protein containing a CARD (ASC, or PYCARD) and, in 
addition to activated caspase-1, is employed in the 
inflammasome formation. Caspase-1 proteolytically processes 
and activates the pro-inflammatory cytokines Interleukin-1β 
(IL-1β) and IL-18, which further activates the downstream 
inflammatory response [68].  

The response of body’s immune system to SARS-CoV-2 
infection has been reported to be generally similar to SARS-CoV 
and MERS-CoV [66,72], which managed to suppress the 
defence mechanisms of immune system, mentioned above, 
and cause more severe stages of disease [73-75]. For example, 
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SARS-CoV alters the activity of RIG-I and MDA5 sensors and 
inhibits MAVS activation, leading to impaired activation of IRF3 
nuclear translocation [69]. Moreover, it also inhibits TRAF3 and 
TRAF6, which play an important role in IRF3/7 activation 
triggered by TLR 3/7 and/or RIG-I binding to MDA5 [74]. 
Although the IFN antagonizing activity of several individual 
SARS-CoV proteins has been characterized in cell cultures, in 
vivo response of innate immune system to SARS-CoV infection 
might be significantly different. During viral infection, these 
proteins form large complexes and their synergistic activity in 
modulating innate immune signalling has not been yet 
understood [76].  

To evade antiviral response of immune system, SARS-CoV-
2 developed several avoidance strategies to block the cellular 
PRRs recognition, both before and after host cell entry stages. 
One of these strategies is represented by Double Membrane 
Vesicles (DMVs) developed by the virus, which might shield the 
PAMPs of viral intermediate dsRNA from being detected by 
cytosolic PRRs [5]. Moreover, the virus makes use of its 
encoded non-structural, structural and accessory proteins as 
antagonists of innate immune molecules. For example, Nsp1 
can inhibit the T1-IFN function by suppressing the activity of 
translational machinery of the host cell, degrading the host 
mRNA, or by inhibiting the phosphorylation of STAT1 
transcription factor [77]. T1-IFN inhibition in the early stage of 
the infection allows the viruses to freely replicate and spread in 
the body, thus leading to a more severe stage of the disease 
[30,72]. Nsp3 is also able to protect SARS-CoV-2 from immune 
system activity, through its encoded proteins, like PLpro and 
macrodomains. PLpro can block the IRF3 phosphorylation [78] 
and also can disrupt NF-kB signalling [79], thus antagonizing 
IFN. Another study reported that mice infected with SARS-CoV-
lacking macrodomains presented no lung pathology and an 
increased survival rate, although the expression of T1-IFN, 
ISG15, CXCL10 and the pro-inflammatory cytokines IL-6 and 
TNF was high [80]. Thus, by inhibiting the function of these two 
proteins of Nsp3 may help the immune cells to hinder the virus 
replication. Nsp7 and Nsp15 can also function as IFN 
antagonists [79]. Another aspect that could have been a weak 
point in viral mRNA structure, thus facilitating its 
differentiation from host cell RNA and recognition by the 
immune cells, is represented by the missing 5’ cap. However, 
the virus developed a mechanism to imitate the capping 
machinery of host cells, through its Nsp14 and Nsp16 [81,82]. 
Thus, an RNA cap (similar to host’s RNA cap) is built by the 
guanine-N7-methyltransferase activity of Nsp14 [81,83] and 
modified by the 2’-O-methyl-transferase activity of Nsp16 
[84,85], making it unrecognizable by host PRRs [76]. In addition 
to IFN antagonist function of Nsps, the structural proteins of 
SARS-CoV-2 virion might also block the innate immune 
responses. Among them, N protein might inhibit T1-IFN 
expression [78], while M protein can block IFN-β transcription 
[86], although these mechanisms are not yet properly 
understood. There are also reports mentioning that accessory 
proteins might have functions in evading immune responses. 
Among them, ORF3b antagonizes T1-IFN signalling pathway, 
but does not block the activation of NF-kB transcription 
triggered by TNF-α [87]. In addition, ORF6 accessory protein 
has the ability to bind to karyopherin-α2 (thus, blocking JAK-
STAT signalling pathway) and to karyopherin-β1 on internal 
membranes (thus, inhibiting nuclear translocation of the 
transcription factor STAT1) [76,79,88]. However, there are still 
many unelucidated aspects regarding the ability of SARS-CoV-

2 to evade or inhibit the host’s innate immune response and 
drive pathogenesis [89].  

In addition to the mechanisms developed by the virus to 
escape the immune system response, elderly persons or 
immunocompromised patients might also present a delayed or 
dysregulated expression of IFNs and ISGs [90]. Thus, viral 
replication and dissemination in primary infected tissues 
proceed unhindered in the early stage of the disease. Moreover, 
virus fragments and intracellular components are released due 
to infected cell death into extracellular environment, which 
further leads to the attraction and accumulation at the site of 
inflammation of large quantities of inflammatory cells 
(monocytes, macrophages, neutrophils) [5,91]. In contrast, 
lymphocytes register alarming low levels (lymphopenia) [92]. 
Among lymphocytes, T cells (especially cytotoxic T cells CD8+ 
and helper T cells CD4+) play important antiviral role in the 
adaptive immune response [35]. However, there has been 
reported that approximately 80% of COVID-19 patients present 
lymphopenia [13,93,94], including reduced number of 
cytotoxic T cells CD8+ and helper T cells CD4+ [95], as well as 
high exhaustion levels and low functional diversity of T cells 
[95,96]. In contrast, SARS-CoV recovered individuals presented 
CD4+ and CD8+ memory T cells even after four to six years post 
infection [97,98], information that might help in developing 
vaccines [5]. Also, B cells are involved in the production of 
antibodies, such as Immunoglobulin (Ig) M and IgG [5], but in 
severe cases of COVID-19 the level of B cells was also decreased 
[99]. In general, IgM produced during SARS-CoV-2 infection can 
last about 3 months, while IgG is present in the body for longer 
periods [64].  

Neutrophils can be activated by the inflammatory 
cytokines, especially IL-8, to secrete particular types of 
molecules, like ROS, as well as proteases. These molecules try 
to eliminate the virus, but unfortunately they also damage the 
surrounding cell tissue. The inflammation can further spread 
into the systemic circulation, leading to systemic inflammatory 
response syndrome (SIRS). Afterward, the body tries to fight 
back by a massive uncontrolled release of pro-inflammatory 
cytokines (such as IL-1β, IL-2, IL-6, IL-8, IL-12, TNF-α, etc.) and 
chemokines (C-C motif chemokine ligand (CCL)-2, CCL-3, CCL-
5, CXCL8, CXCL9, CXCL10) [100,101] which, in addition to a 
dysfunctional T cell response, results in hyperinflammation or 
cytokine storm [13]. 

CLINICAL MANIFESTATION 

SARS-CoV-2 uses its S protein to attach to ACE2 receptors 
of host cells, to enter the human body. Thus, this virus can 
potentially infect all ACE2-expressing cells, such as those in the 
respiratory system, heart, gastrointestinal tract, kidneys, etc., 
targeting almost all organs in the body (Figure 4). However, 
approximately 80% of all ACE2-expressing cells are type II 
alveolar cells in the lungs [102], which have been reported to 
be highly affected by this virus. In addition to these cells, 
ciliated and goblet/secretory cells in the upper respiratory tract 
and nasal mucosa are also affected [102,103]. Although the 
majority of studies show that SARS-CoV-2 affects respiratory 
epithelium and pulmonary alveoli [104,105], there are also 
reports of cardiovascular complications in some COVID-19 
patients [106], suggesting that myocardiocytes and vascular 
endothelia can also be infected [107,108]. In addition, other 
studies show that the virus also affects the digestive system, 
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since ACE2 is expressed as well in absorptive enterocytes 
present in the colon and ileum, as well as cholangiocytes 
[64,109,110]. Moreover, the proximal tubules damage leads to 
kidney failure. Immune cells (like macrophages, monocytes 
and T cells) have been observed to be infected by SARS-CoV, 
although they have a lower ACE2 expression level [69,111,112]. 
However, it is not yet clearly known if/how SARS-CoV-2 infects 
these types of immune cells. 

Respiratory System 

SARS-CoV-2 infects the respiratory system by attaching to 
type II pneumocytes in the alveoli. There are actually two 
different types of pneumocytes in the alveolar walls: type I 
pneumocytes (which are responsible for gas exchange 
between alveoli and blood) and type II pneumocytes (which 
secrete pulmonary surfactant, with role in decreasing the 
surface tension within alveoli and reducing the collapsing 
pressure). Viral widespread inflammation of pneumocytes can 
lead to diffuse alveolar damage and ARDS, which activates the 
release of immune cells into the alveoli. However, their 
nonspecific defensive mechanisms contribute to amplification 
of this situation and lead to further damage of alveolar cells. 
Moreover, the pro-inflammatory cytokines (like IL-1, IL-6, TNF-
α, etc.), released into the pulmonary capillary, lead to 
increased vascular permeability. As a result, the fluid might 
start leaking and accumulating into the interstitial spaces 
(causing interstitial edema, and alveoli compression), and can 
enter into the alveoli (affecting the surfactant 
production/concentration and causing alveolar edema). 
Further, the surface tension is affected, leading to alveolar 

collapse and atelectasis. In this stage, reopening the alveoli 
during inhalation is extremely difficult, thus the work of 
breathing increases. Moreover, high amount of fluid 
accumulated around the alveoli impairs the proper gas 
exchange through the alveolar membrane, causing hypoxemia 
(low arterial partial pressure of oxygen, PaO2) and hypercapnia 
(increased level of CO2 in the blood, PaCO2). Further, due to 
insufficient oxygen delivered to the tissues, hypoxemia can 
lead to shortness of breath (low fraction of inspired oxygen, 
FiO2). On the other hand, hypercapnia can progress to 
respiratory acidosis. Also, all the cytokines released affect the 
vascular endothelium, increasing the expression of a particular 
type of proteins, called vascular cell adhesion molecules 
(VCAMs). Leukocytes attach to vascular endothelium, by VCAMs 
mediation, in order to enter the inflammation area. Thus, if the 
expression of VCAMs is increased, then more neutrophils and 
macrophages can reach the affected area, which perpetuate 
the inflammatory response. In addition, the leukotrienes 
stimulate the bronchial smooth muscle, causing 
bronchoconstriction, which further decreases the gas 
exchange (hypoxemia), exacerbating the already present 
shortness of breath (or dyspnoea). The accumulation of all 
damaged cells, protein deposition, macrophages, and 
neutrophils, form a hyaline membrane and pulmonary 
consolidation. Also, the cytokines can increase the activity of 
pro-coagulants, leading to pulmonary embolism.  

The inflammation within the lungs can spread into the 
systemic circulation, leading to SIRS and massive cytokine 
storm [5,13]. The increased vascular permeability throughout 
the entire circulatory system causes plasma to start leaking out 

 
Figure 4. SARS-CoV-2 infection symptomatology 
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and accumulate within the tissue spaces, decreasing overall 
blood volume (hypovolemia). In addition, vasodilatation leads 
to decreased total peripheral resistance. In effect, the patient 
becomes hypotensive, with a decreased perfusion to different 
organs, heading toward multi-system organ failure [5]. 

Cardiovascular Injury 

Cardiovascular injury might be triggered by direct viral 
infection or indirect effect of hypoxemia and cytokine storm 
[113-115], and has been reported to be one of the major 
complications and causes of death in SARS-CoV-2 infection 
(about 77% of COVID-19 patients in intensive care units) 
[13,94,116]. Moreover, individuals with previous cardiovascular 
disorders (hypertension, coronary artery disease) are more 
prone to progress to a severe stage of SARS-CoV-2 infectious 
disease, with worse cardiac injury [94,117]. 

As has been reported in SARS-CoV [118] and MERS-CoV 
cases, SARS-CoV-2 is also a cardiotropic virus, which can 
directly bind on ACE2 receptors highly expressed in 
cardiomyocytes, cardiofibroblasts, and coronary endothelial 
cells [119]. Moreover, SARS-CoV-2 has been reported to 
contribute to downregulation of ACE2 expression, leading to 
decreased conversion levels of hydrolysed angiotensin II into 
angiotensin 1-7 [120]. Angiotensin 1-7 agent plays important 
protective roles in cardiovascular organs [121] and decreases 
the production of pro-inflammatory cytokines [120]. Thus, its 
suppression might trigger elevated risks of vasoconstriction, 
endothelial dysfunction, oxidative stress, and amplified 
cytokine storm [122]. Among the reported cardiac dysfunctions 
are: tachycardia, myocarditis, or myopericarditis [117,122]. 
Heart injury is expressed by elevated levels of cardiac markers, 
like creatine kinase myocardial band (CK-MB) (acute 
myocardial infarction), elevated troponin, which might also 
lead to increased levels of N-terminal prohormone of brain 
natriuretic peptide (NT-proBNP), and high myoglobin 
[94,116,122,123]. 

Hepatic and Gastrointestinal Tract Inflammation 

Liver dysfunction is another clinical feature reported in 
SARS-CoV-2 infected patients [124,125], as also seen in 
previous SARS-CoV [126] and MERS-CoV [127] outbreaks. The 
incidence of hepatic dysfunctions was registered in 15% to 78% 
of COVID-19 cases [128]. Among the indicators signalling 
hepatic injuries, the most encountered are abnormal elevated 
levels of alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), albumin (ALB)/globulin (GLB) and 
slightly elevated levels of total bilirubin (TB) [124,129]. 

The possible mechanism of liver damage in COVID-19 
patients, although not yet clearly elucidated, seems to be 
triggered by both direct viral infection cytopathogenic effect, 
as well as indirect effect of inflammatory cytokine storm. 
Although, ACE2 receptors are only slightly expressed in 
hepatocytes (about 2.6%), they are highly expressed in 
cholangiocytes (about 59.7%), suggesting that the virus might 
directly affect biliary duct, further leading to damaged liver 
activity [130]. Moreover, typical lymphopenia and increased 
level of C-reactive protein were reported to cause hepatic 
dysfunctions in severe cases of COVID-19 [125,131]. In addition, 
individuals with pre-existent liver diseases are more 
susceptible to contract and develop severe stages of SARS-
CoV-2 infections [131,132].  

CoVs are also well known to cause gastrointestinal 
infections [133], with typical symptoms like diarrhoea, 

vomiting, nausea, and abdominal pain [129,134]. SARS-CoV-2 
might attach to ACE2 receptors of glandular cells present in 
gastric and duodenal epithelia [110] or enterocytes [135], 
causing absorption dysfunction, abnormal gastrointestinal 
enzymes secretion and activation of enteric nervous system, 
leading to diarrhoea [110]. Also, the inflammatory response of 
immune system might indirectly affect the gastrointestinal 
tract [134]. There are reports mentioning that COVID-19 
patients who did not develop digestive symptoms present 
higher healing rates (about 60%), as opposed to patients with 
digestive symptoms (about 34%) [134]. 

Kidney Injury 

Acute kidney injury has been reported to be a major cause 
of death in SARS-CoV and MERS-CoV infected individuals 
(mortality rate around 60% - 90%) [136]. Although early studies 
reported that acute kidney injury incidence is low (3% - 9%) in 
SARS-CoV-2 cases [93,94,129], however there are recent 
reports suggesting higher percentage of renal dysfunction 
[137,138]. The ACE2 receptors are also expressed in renal 
tubular cells, thus facilitating viral binding and pathogenesis 
[136]. Moreover, massive inflammatory syndrome might also 
lead to kidney damage. Among the clinical features of COVID-
19 patients are extremely high albuminuria, proteinuria, 
haematuria, elevated levels of blood urea nitrogen (BUN) and 
serum creatinine (sCr) [137,138]. 

Coagulation Disorders 

Severe cases of SARS-CoV-2 infection have been reported 
to present a major risk to develop coagulation disorders, like 
disseminated intravascular coagulation (DIC), which is an 
imbalance between fibrinolysis and coagulation homeostatic 
mechanisms [129,139-141]. DIC diagnosis may identify several 
markers, like abnormally low platelets count 
(thrombocytopenia) and fibrinogen levels, high fibrin 
degradation products (like D-dimer), prolonged prothrombin 
time (PT) and partial thromboplastin time (PTT) [140,142,143]. 
Clinical features that patients affected by DIC might experience 
are: shortness of breath, chest pain, increased vascular 
permeability, leading to widespread haemorrhage and 
clotting, hypotension, shock, defective organ perfusion, 
further progressing to multi-system organ failure. 

Neurological and Neuromuscular Damage 

CoVs have been reported to cause neurological and 
neuromuscular symptoms, in addition to their primary 
pulmonary and gastrointestinal diseases [144-148]. However, 
the SARS-CoV-2 mechanisms to infect central nervous system 
(CNS) and peripheral nervous system (PNS) are currently 
unclear and sparsely treated in literature. The mechanism 
triggering the neurological damage might be due to either 
direct viral infection or systemic inflammation. ACE2 receptors 
are also expressed on the surface of glial cells in the brain and 
spinal neurons [149], and can potentially facilitate virus 
neurotropism [150], followed by dissemination through axo-
dendritic synapses [33,151]. ACE2 receptors have also been 
reported to be found both in olfactory epithelium, as well as 
vascular endothelium [149,152]. Thus, the virus may enter the 
brain by first infecting nasopharyngeal mucosa, and then 
spreading through the cribriform bone [153]. A second route 
might be through haematogenous viremic dissemination of 
infected endothelial cells and leukocytes, crossing blood brain 
barrier and leaking into the brain [149,154]. Neurological 
swelling and brain edema can result from several other 
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pneumonia-associated factors, like peripheral vasodilatation, 
hypoxia and hypercarbia, further leading to neurological 
dysfunction [155]. 

Reported symptomatology of CNS and PNS damage 
associated to COVID-19 is diverse, and varies depending on the 
stage of the disease [156-160]. Thus, some reports mention 
that early stage of the disease may be accompanied by mild 
non-focal symptoms, including dizziness, confusion, 
headache, agitation, as well as peripheral symptoms (such as 
ataxia, neuralgia, anosmia and hypogeusia) [13,116,161-163]. 
However, more severe neurologic and neuromuscular damage 
have also been reported in severe stages of COVID-19, like 
acute cerebrovascular diseases (including ischaemic stroke, 
cerebral haemorrhage and cerebral venous sinus thrombosis), 
meningoencephalitis, skeletal muscle injury, epilepsy 
[157,161,164]. 

MULTI-LEVEL IMPACT OF COVID-19 

Over the last year the entire world population was faced 
with very hard time of the ongoing COVID-19 pandemics. In this 
context, multi-level challenges are affecting various aspects of 
our lives. Besides obvious medical impact [165], COVID-19 
pandemics led to serious perturbations in social [166-168], 
economic [166], or education [169,170] sectors, to name just a 
few. 

Due to the novelty and severity of this type of coronavirus, 
which was predicted to be highly transmissible even since its 
appearance, National authorities around the world adopted 
(based on WHO recommendations) various preventive 
measures (such as hand hygiene, wearing masks, social 
distancing or quarantine). Almost each country encountered 
difficulties to implement these measures, thus leading to a 
rapid spread of the virus. One of the reasons is represented by 
the lack of population response to these preventive measures, 
mainly triggered by absence of trust in political/medical 
authorities and poor health education, encountered even in 
the developed countries. Moreover, some health instructions 
(e.g., the „correct” way for mask wearing, hand washing, 
sneezing, coughing) presented on social media, radio or 
television programmes demonstrate miss-understanding of 
virus spread preventing measures. In this context, there is of 
paramount importance to properly educate the population on 
a large scale about basic health measures. The population 
health education should be implemented especially in schools, 
as well as at the workplace or in healthcare facilities. Investing 
in population health education might shorten the period of 
current COVID-19 pandemic, as well as limiting the impact of 
future health hazards [167]. 

The education sector is also suffering from the current 
pandemic. In order to limit virus spread, educational 
institutions worldwide, from kindergartens to universities, 
were forced to re-adjust their academic calendar or even close 
their doors. Courses, exams, and graduations have been 
postponed or even cancelled. Teachers, students, and parents 
needed to readapt on a short time notice their entire activity, 
and quickly learn various online tools with which they were not 
familiar before. Although some prestigious universities (e.g. 
Harvard, Yale, Oxford, Cambridge, MIT) have been using the 
online teaching programmes for several years and are 
accustomed to E-learning technologies [169], the majority of 
educational institutions around the world were overwhelmed 

by implementing the online learning activities, due to lack of 
appropriate infrastructure (computers, recording platforms) 
and technical support, absence of previous training for 
teachers/students to utilise the online platforms and different 
online learning tools. 

Some studies listed the advantages that students 
mentioned when questioned about online learning system in 
contrast with traditional methods of learning [169,170]. Thus, 
some students affirm that they have better academic 
performances, and they tend to be more organized when 
studying online, since they have more control over their 
learning resources and more time to internalize the 
information.  

However, there are also several difficulties encountered 
during E-learning process: financial issues (high cost necessary 
for learning resources, like laptop/tablet/phone and internet 
data), no internet access or slow connectivity, inadequate 
environment (multiple family members present in the room). 
Moreover, some professors limited their teaching activity to 
posting their courses in PowerPoint slides, which is not a 
proper online teaching method. Due to incapacity to 
adequately benefit from the online learning systems, many 
students manifested high level of worry, agitation, and stress 
concerning homework, quizzes, or the coming exams. 
However, further studies are required in order to monitor the 
long-term impact of online education, in contrast with face-to-
face delivery of knowledge, and adverse effects both on 
students and teachers [169,170]. 

Another significant issue that was observed during the 
current health crisis is a spectrum of mental health 
disturbances and sequelae (such as sleep disorders, stress, 
panic, depression, and anxiety), manifested by recovered 
COVID-19 patients, as well as other people who did not get 
infected (medical staff, family members, unemployed or 
elderly people) [166,168]. Among the aspects that contributed 
to these mental alterations are loneliness due to social 
isolation and quarantine, loss of jobs, alarming news presented 
by mass-media, worry for the consequences of infection, long 
hospitalization, near-death experiences, death of family 
member, etc. There is well-known that a deteriorated mental 
state affects the immune system activity, thus leading to more 
frequent illnesses and for longer periods of time. In this 
context, there is an urgent need to develop counselling 
programmes and psychiatric care to support the mentally 
affected individuals (telephone assistance, hotlines, or online 
forums). However, other more profound alterations on 
psychological level of people suffering due to COVID-19 
pandemic might be visible only after months or years later, 
thus increasing the need for psychiatric assistance [168]. 

CONCLUSIONS AND FUTURE PROSPECTS 

Over the last year, the entire world was faced with the third 
coronavirus-induced pandemics of the 21st century, after SARS-
CoV and MERS-CoV outbreaks. Since SARS-CoV-2 emergence in 
Chinese city of Wuhan, the scientific community joined efforts 
in order to find solutions to eradicate this virus. The genomic 
analysis of the virus revealed its similarity with several bat-
derived CoVs, among which bat-CoV-RaTG13 has a sequence 
identity of ~96.3%, while previous SARS-CoV has a genetic 
identity of ~79%. SARS-CoV-2 has been seen to possess 
different strategies to evade host’s immune system 
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recognition, thus making this virus more transmissible and 
infectious. Mediated by S protein binding to ACE2 receptors of 
host cells, SARS-CoV-2 enters the human body and infects the 
respiratory system, gastrointestinal tract, liver, heart, brain, 
kidneys, etc. In severe cases, it leads to a massive cytokine 
storm and multi-organ failure. Given the massive impact of this 
virus in all aspects of our lives, and since there are currently no 
specific anti-SARS-CoV-2 drugs or vaccines clinically approved, 
synergistic efforts into finding solutions to stop this pandemic 
are of paramount importance. Thus, there is an urgent need for 
fast and highly precise detection methods, as well as safe and 
efficient treatment strategies. These can be accomplished only 
with a good understanding of SARS-CoV-2 structure and 
mechanisms of infection. In this regard, the present paper aims 
to offer a comprehensive overview on this novel type of 
coronavirus. 
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