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 Acute lymphoblastic leukemia (ALL) is a severely invasive hematological cancer that results from the rapid 
increase and accumulation of lymphoid blasts in the blood, bone marrow (BM), and other organs. The 

pervasiveness of ALL has made it the prevalent childhood acute leukemia making up approximately 80% of 

leukemia in children and about 20% in adults. Due to the prevalence of ALL, more accurate diagnosis and 

prognostic methods are required. Proteome analysis uses a variety of analytical techniques, including protein 

sequencing, structural or expression proteomics, protein modification, sub-cellular protein localization, protein-
protein interactions, and biological functional proteomics. Analysis of cell-signaling pathways and 

activation/deactivation are crucial to follow up the development, remission, or relapse of ALL. As a result, this 

review emphasizes cytogenetics and immunophenotyping while also highlighting the proteomic profile, clinical 

symptoms, diagnosis, and management of ALL. Also, it evaluates the procedures and techniques for the testing of 

bodily fluids (peripheral blood, cerebrospinal fluid, and BM) from ALL patients at various stages of disease, as well 

as the use of proteomic platforms in discovering sensitive and specific biomarkers for ALL. 
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INTRODUCTION 

Acute lymphoblastic leukemia (ALL) is a class of cancer in 

which bone marrow (BM) loss it control and tends to produce 

excessive and immature lymphocytes. In both adults and 

children, ALL affects all of the red and white blood cells as well 

as the platelets [1, 2]. Approximately 80% of childhood acute 

leukemia cases impact children, but only 20% of adult 

instances of leukemia are caused by this common type of 

childhood acute leukemia. Children make up for 75% of ALL 

positive patients [3]. One-third of pediatric malignancies are 

ALL, which is one of the most common juvenile malignant 

cancers with a peak incidence between two and six years of age 

[4, 5]. About 30% of ALL patients relapse, nevertheless the 

improvement in therapeutic treatment for leukemia in the 

least 20 years [6]. Isolated extramedullary relapse occurs in 

about 20% of relapse cases, while the central nervous system 

(CNS) accounts for 65% of relapse cases [6, 7]. ALL covers a 

cluster of onco-hematological fast developing medically and 

biologically varied entities, typified by unrestrained increase in 

undeveloped white blood cells in the BM and blood, and 

permeation of these cells into surrounding tissues. The 

prevalent signs of ALL are fever, extreme tiredness or feeling of 

exhaustion, anemia, bleeding and easy bruising, bone or 

arthralgia, ecchymosis and petechiae [1]. More severe clinical 

manifestations include shortness of breath, enlarged liver, 

enlarged spleen, swollen lymph nodes, mediastinal and 

testicular infiltration [1, 8]. The symptoms are frequently 

randomized, and the medical prognosis is performed 

according to pathologic, immunochemical, and molecular 

assessment of the BM aspirate and biopsy material, with the 

standard of a minimum of 20% of BM lymphoblasts for the 

determinative diagnosis of ALL.  

ALL is thought to result from the interaction of endogenous 

or exogenous stressors with genetic vulnerability and 

likelihood. Infections, ionizing radiation, and chromosomal 

translocations that arise in utero during fetal hematopoiesis 

and postnatal genetic events are regarded as primary causes 

and derivative contributor to ALL [9]. These genetic 

modifications dislocate the genes that control normal 

hematopoiesis and lymphoid growth. This could lead to initiate 

the activation of oncogenes or instigate the activation of 

tyrosine kinases. Patients with Klinefelter’s syndrome, trisomy 

21, and hereditary ailments with extreme chromosomal frailty 

such as Fanconi’s anemia, ataxia-telangiectasia and Bloom’s 

syndrome are more susceptible to ALL [3, 10]. The risk of 

developing ALL may be further exacerbated by 

chemotherapeutic treatment and exposure to radiation. 

Nonetheless, no gross chromosomal modification was 

observed in the bulk of ALL patients, indicating that further 

submicroscopic genetic modifications possibly account for 

leukemogenesis [9].  

https://www.ejgm.co.uk/
mailto:Sultan.S.Ayesh@ahu.edu.jo
mailto:sultan_a1976@yahoo.com
https://doi.org/10.29333/ejgm/13386
https://orcid.org/0000-0001-7134-3199


2 / 13 Saghir / ELECTRON J GEN MED, 2023;20(5):em519 

The time between the first diagnosis and the relapse, 

locations of the relapse, and the immunophenotype of the 

leukemic cells, which has a worse prognosis for T-cell 

phenotype, are three important predictive criteria that are 

often analyzed for the clinical outcome of first ALL-relapse 

patients [11, 12]. The treatment of ALL relapse cases is rely on 

the aforementioned predictive aspects, and they include 

chemotherapy and BM transplant in patients with high threats 

of early on and delayed relapses, which are evident by weak 

responses to chemotherapy treatment [13]. The polymerase 

chain reaction (PCR) of markers, such as immunoglobulins and 

reorganizations of T-cell receptor genes, is used to describe the 

relapse leukemic blasts at an extramedullary site [14, 15]. 

Exploring biomarkers for different hematological 

malignancies has drawn a lot of attention as a result of recent 

developments in proteomic-related technology. The 

conventional proteomic platforms’ extensive protein analysis 

of proteins from cells, fluids, tissues, and organs has provided 

information on the complexity and heterogeneity of the 

malignancy at different phases of development and 

progression [16, 17]. Proteomics is a cutting-edge technique for 

improving the detection of protein-based markers in ALL 

relapses and is a useful tool for creating customized and 

altered treatments [16, 18]. Proteomics has thus steadily 

become the main method in cancer research for characterizing 

aberrant protein expressions that may be used as disease 

biomarkers [17, 19]. These biomarkers might be used in 

conjunction with more conventional diagnostic techniques, 

such hematology and cytogenetics, to improve the accuracy of 

the diagnosis and offer prognoses for ALL with the least 

number of intrusive biopsies [20]. Understanding how ALL 

originates, remits, or returns depends on a detailed 

understanding of cell-signaling routes and 

activation/deactivation. This is because cell-signaling 

processes control the leukemic cell’s rapid growth, separation, 

apoptosis, and survival [20, 21]. 

A perusal of relevant and current literature on ALL indicates 

randomization of vital knowledge on proper profiling of the 

cancer. The existing literature is inundated with repetitive 

reportage of the diagnosis and treatment of ALL. Therefore, 

this review strives to concisely highlight the pertinent details 

on ALL by comprehensively compiling information on the 

proteomic profile, clinical manifestations and diagnosis, and 

cure of ALL with emphasis on cytogenetics and 

immunophenotyping. The review also assesses the work-flow 

and protocols for the examination of body fluids (peripheral 

blood, cerebrospinal fluid, and BM) from ALL patients at 

various stages of pathology, significance of proteomic 

platforms in identifying ALL-specific and sensitive biomarkers. 

MATERIALS AND METHODS 

Based on a thorough computerized search of the PubMed 

database using the phrases “acute lymphoblastic leukemia”, 

“cytogenetics of ALL”, “immunophenotyping of ALL”, 

“proteomics”, and “proteomic profile of ALL”. The search 

results were narrowed down to studies published in English. 

Similarly researched materials include practice guidelines, 

conference proceedings, clinical trials, books, systematic 

reviews, and meta-analysis. Publications from different related 

oncology based societies such as American Society of Clinical 

Oncology, American Society of Hematology, and European 

Society of Hematology were also assessed. Papers published 

between 2005 and 2022 were searched up in the appropriate 

databases. Citations for research articles on ALL are included in 

this paper. 

Diagnosis and Clinical Manifestations of ALL 

ALL embodies a class of onco-hematological fast 

developing biologically and clinically diverse entities, 

differentiated by uninhibited increase in immature WBCs in the 

blood and BM, and permeation of these cells into other tissues. 

Fever is among the most prevalent signs and symptoms 

(induced by leukemia or derived from severe infections in the 

case of abnormally low count of neutrophils), tiredness, lack of 

or dysfunction in red blood cells, bleeding, bone or articular 

pain, and blood disorders such as ecchymosis and petechiae [1, 

22, 23]. Additional critical clinical expressions comprise 

shortness of breath (dyspnea), hepatomegaly (enlarged liver), 

splenomegaly (enlarged liver), mediastinal and testicular 

infiltration, and swelling of the lymph node [1, 23].  

Assessment of the peripheral blood film to determine the 

presence of blasts is the first step in ALL diagnosis. The 

manifestation of only growths in the mediastinum or swelling 

of the lymph nodes (lymphadenopathy) implies that the 

patient may require tissue samples for biopsy. However, every 

patient requires a BM test. Based on the classification 

developed by World Health Organization (WHO), contrary to 

myeloid malignancies, no consensus has been reported on the 

minimum limit for the fraction (%) of blasts needed to launch a 

prognosis of lymphoblastic leukemias [24]. Regardless, several 

standard procedures propose that the assessment of ALL 

demands the expression of >20% blasts in the BM aspirate [25]. 

Conventionally, ‘lymphoma’ is utilized in a case, where the 

progression is restricted to a mass lesion with no or negligible 

indication of peripheral blood and BM contribution. According 

to morphology, lymphoblastic lymphoma exhibits similar 

inherent and Immunophenotypic characteristics with ALL. 

The disparity in prognosis of ALL is anchored in the 

attributes of routine Romanowsky stains of BM and peripheral 

blood smears i.e., cytochemical staining (negative 

myeloperoxidase, alpha-naphthyl acetate esterase, Sudan 

black B) and immunophenotyping of leukemic cells. Until 

lately, the classification of ALL using Cooperative French-

American-British (FAB) Group was derived from the shape and 

size of leukemic cells (subclass L1, L2, and L3); nonetheless, the 

real categorization is according to immunophenotype [24]. 

Pre-B ALL is largely discriminated via expressions of 

cytoplasmic immunoglobulins (cIg) and indicators that include 

CD79a, CD19, HLA-DR and CD10; B cells ALL is distinguished by 

the expression of surface immunoglobulins (sIg) and heavy 

chains; while T-cell ALL is typified by the cytoplasmic 

expression of CD3, CD7, CD5, or CD2. In addition, a subclass of 

ALL referred to as pre-B transitional is discriminated by the 

expression of cytoplasmic ion heavy chains µ in 

immunoglobulins, and poor expression of these surface chains, 

in the absence of light chains λ or k [1]. A minute group (˂5%) 

of ALL cases possesses indistinct genetic makeup given that 

they can manifest as lymphoid and myeloid markers (bipheno-

typic) or are characterized by two cell populations. 

Clinical manifestations of ALL are extremely inconsistent. 

The patients may manifest a wide range of symptoms at 

presentation, such as bleeding, ecchymosis, shortness of 

breath, dizziness, and infections resulting from anemia, low 

platelet level and abnormally low count of neutrophils in 
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addition to extremity and arthritis or arthralgia [25]. Swollen 

lymph nodes enlarged spleen and/or enlarged liver are 

observed on physical assessment in roughly 20% of patients 

[25]. Abdominal masses from gastrointestinal contribution or 

numb chin syndrome from the involvement of cranial nerve are 

observable, although they are more indicative of mature B-ALL. 

About 10% of patient’s exhibit indicative CNS involvement. T-

lineage ALL with a mediastinal mass can initiate musical 

breathing/extra thoracic airway obstruction and wheezing, 

superior vena cava syndrome (SVCS), and pericardial effusions. 

Testicular contribution is atypical in adults [26]. It was 

confirmed that Philadelphia chromosome-positive ALL cells 

has elevated level expressions of the non-DNA-binding isoform 

Ik6, which was produced subsequent to IKZF1 genomic 

deletions and aberrant splicing resulting in diverse non-DNA-

binding Ikaros cDNA transcripts [27]. 

Cytogenetics 

With regard to genetics, ALL is a heterogeneous and 

intricate entity, characterized by genetic alterations that 

include the presence of abnormal number of chromosomes 

i.e., aneuploidies (hyper diploid and hypodiploidy of > 50 

chromosomes and ˂44 chromosomes, respectively) and 

chromosomal translocations. For pediatric leukemia, B-cell 

lineage translocations t(12:21) (TEL-AML/ETV6-RUNX1), t (1;19) 

(E2A-PBX1 /TCF3-PBX1) and t (9;22) (BCR-ABL) and fusions that 

entail the MLL (principally MLL-AF4) gene are subjected to the 

most explanations and most common genetic incongruities. In 

general, ETV6-RUNX1 is detected in 3-45% of cases, 

accompanied by TCF3-PBX1 (13%), BCR -ABL (3-5%) and MLL-

AF4 (6.0%) [1, 28]. For instance, for ALL patients in Mexico, the 

initial three alterations are the most prevalent and comprise 

between 17.7% to 28.8% of all genetic anomalies though BCR-

ABL reached up to 19% in certain populations [29]. However, 

MLL gene reorganizations were noted in 1.4% of the entire 

cases and in 23% of patients ˂ 26 months. In addition, T-cell ALL 

is differentiated by mutations in NOTCH1 (equal to two-third of 

cases) and reorganizations in TLX1-HOX11 (5-10%), TLX3-

HOX11L2 (20%) (Table 1) [1, 23]. 

Karyotype is a vital predictive factor with several 

cytogenetic defects being related to distorted diagnosis in ALL 

(Table 2). The occurrence of cytogenetic anomalies differs 

between pediatric and adult ALL and may partly clarify the 

disparities in experimental results among patients [25]. The 

importance of cytogenetic aberrations as the utilization of 

pediatric procedures in adult patients increases is not known 

[31]. About 90% of pediatric Philadelphia chromosome-

positive (Ph+) ALL patients possess the typical ALL-type p190 

translocation [32]. It has been reported that BCR-ABL1 

translocation exists in about 8-10% of adolescents and is the 

main recurrent and clinically pertinent genetic aberration in 

adult ALL, i.e., from 15% to 30% with rising incidence, reaching 

50% in the aged [26]. Till lately, the BCR-ABL1 was identified as 

the most unfavorable subclass of adult ALL. Even though CR 

rate varied from 75%-80%, median DFS was approximately 10 

months and five years survival lower than 10-20% through only 

chemotherapy [33]. As early as 1995, it was reported that the 

CALGB 8811 medical assessment of t(9;22) identification 

exhibits an unfavorable impact on survival of statistical 

significance, with only an estimated 16% of patients with either 

a Ph chromosome or a BCR-ABL reorganization surviving for 36 

months, in contrast to 62% of patients who showed negative 

results for both genetic tests (p<0.001) [34]. On the other hand, 

majority of studies have demonstrated a higher survival rate 

Table 1. Frequently identified cytogenetic aberrations & ALL prognosis [30] 

Cell line Cytogenetic abnormalities Genes Frequency (%): Reported populations (%) Prognosis 

B cells 

Hyper ploidy  20-30 [1, 23, 28] Favorable 

Hyper ploidy  5-6 [1, 23] Unfavorable 

t(12;21) (p13;q22) TEL-AML1 25 [1, 23] Favorable 

t(1;19) (p23;q13) E2A-PBX1 13 [23, 28] Unfavorable 

t(9;22) (p34;q11) BCR-ABL1 3-5 [23, 28] Unfavorable 

t(4;11) (p21;q23) MLL-AF4 6 [1, 23] Unfavorable 

T cells 
9q34 NOTCH1HOX11 60 [23, 28] Unfavorable 

10q24  20 [23, 28] Unfavorable 
 

Table 2. Cytogenetic prognostic factors in ALL 

Aberration: Cytogenetics Clinical effect Remarks 

MLL rearrangements Unfavorable prognostic indicator 

Use of pediatric protocols in adult patients is important. Immature 

immunophenotype, co-expression of myeloid antigens, B-cell lineage, & 

elevated WBC counts [35].  

Philadelphia chromosome Unfavorable prognostic indicator 8-10% adolescents, 15-30% adults, & 50% elderly [36, 37]. 

iAMP of chromosome 21 Unfavorable prognosis About 2% of older children with B-ALL [37, 38]. 

t(1;19) [TCF3- PBX1] Unfavorable prognostic indicator 

Constitute about 30% of childhood ALL; unfavorable prognosis can be 

overcome with exhaustive chemotherapy treatment in both adults & children, 
higher risk of CNS relapse [39]. Adults exposed to hyper CVAD treatment 

exhibited higher CR & OS than l other patients [40]. 

t(12;21) [ETV6- RUNX 1] Positive prognosis Apparent in an estimated 18-25% of children [41, 42]. 

Complex karyotype Unfavorable prognosis Over five chromosomal abnormalities [43]. 

Hypodiploidy Unfavorable prognosis 
5-6% of ALL cases; near haploid & low hypodiploid possess the worst 

perspectives [44]. 

Hyper diploidy Positive prognosis 

25-30% of cases; non-random gain of chromosomes X, 4, 6, 10, 14, 17, 18, & 21; A 

higher tendency for the cells to undergo caspase-induced cell death may be 
cause of good prediction [45]. 

Note. WBC: White blood cells; ALL: Acute lymphoblastic leukemia; iAMP: Intrachromosomal amplification; CNS: Central nervous system; CVAD: 

Combination of cyclophosphamide, vincristine, dexamethasone, doxorubicin, methotrexate, & cytarabine; CR: Complete remission, & OS: Overall 

survival 
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with HSCT than only chemotherapy [33]. Combining 

chemotherapy with tyrosine kinase inhibitors (TKIs) have 

generated prospective outcomes, even though with 

ambiguous effect on lengthy DFS. 

The t(4;11) occurs in approximately 60% of infants aged 

below one year, although it is seldom detected in adults. It was 

reported that the reorganized MLL gene is related to lower RFS 

and OS in adult patients with the use of a pediatric procedure 

[31]. The t(1;19) reportedly exists in 30% of childhood ALL. For 

example, it was assessed the effect of modern therapeutic 

treatment on children with t(1;19)/TCF3/PBX1 who were 

handled at St Jude Children’s Research Hospital, where the 

patients exhibited similar EFS and a lesser collective 

occurrence of several hematological relapse. Data have shown 

that t(1;19) is an autonomous risk parameter for isolated CNS 

relapse [39]. Similarly, it was reported that adults subjected to 

hyper-CVAD treatment or regimen exhibited a considerably 

higher CR and OS than all other patients put together, and 

showed similarities with patients that displayed Ph+, t(4;11), 

and lymphoma-like aberrations (deletion 6q, addition q14q, 

t[11;14], and t[14;18]). The study inferred that adults with ALL 

and t(1;19) had an exceptional prognosis when treated with the 

hyper-CVAD regimen [40]. However, an earlier report 

discovered that this aberration is often related to early 

treatment breakdown, thus suggested that E2A-PBX1+ adult 

ALL should be taken into consideration for aggressive therapy 

[46]. The t(12;21) aberration resulting in ETV6-RUNX1 fusion is 

evident in approximately a quarter of children and 3% of adults 

with B-ALL. Patients normally exhibit a positive prognosis [47]. 

Hyper diploidy (>50 chromosomes) is observed in about 

25%-30%, and 7% of pediatric and adult cases, respectively, 

and is the most frequently detected chromosomal anomaly in 

children. As presented in Table 1, hyper diploidy is related to a 

positive prognosis (20-30%) irrespective of leukocyte count 

and age [48]. Its distinctive genetic attribute is the uniform gain 

of chromosomes X, 4, 6, 10, 14, 17, 18, and 21, with individual 

trisomies or tetrasomies that are observed in more than three-

quarter of cases. The individual structural aberrations show no 

effect on the result in patients with hyper diploidy with the 

exception of t(9;22), which is related to unfavorable prognosis.  

The favorable prognosis may reveal a higher tendency of 

these cells to experience caspase induced cell death [39]. On 

the contrary, around 5 to 6% of ALL patients, regardless of age, 

lose different chromosomes, leading to a hypodiploid clone 

with less than 44–46 chromosomes. These patients usually 

have an unfavorable prognosis, particularly cases with near-

haploid and low-hypodiploid clones [47]. Current data infer 

that composite karyotypes (≥5 chromosomal aberration) arise 

more regularly as persons aged and may be related to inferior 

survival [33]. Intrachromosomal amplification of chromosome 

21 (iAMP21) takes place at a frequency that reaches 2% in 

grown-up children with B-cell precursor ALL [38]. iAMP21 is 

related to poor result and prognosis when patients are 

subjected to conventional treatment, since it is linked to a 

higher threat of both early and late relapses [47]. 

Diagnosis: Immunophenotyping 

The evaluation of immunophenotype using flow cytometry 

is crucial component of the WHO classification of neoplastic 

diseases of hematopoietic and lymphoid tissues [26]. The 

preliminary immunophenotyping sheet needs to be sufficiently 

detailed to ascertain a leukemia associated phenotype (LAP), 

which enables its utilization in minimal disease monitoring 

(MRD). The surveillance, epidemiology and end results (SEER) 

repository displayed a superior diagnosis with B cell in contrast 

to T cell immunophenotype in patients <20 years old, whereas 

in patients ≥20 years old, T cell immunophenotype showed 

more positivity [49]. This was demonstrated in a quantitative, 

epidemiological study [50] that comparatively analyzed the 

therapeutic effect of chemotherapy treatment for T- and B- 

lineage ALL and found relatively better survival in patients with 

T-lineage ALL, even though the addition of patients with Ph+ 

ALL possibly predisposed the outcome.  

T-cell ALL in adults makes up majority of adult ALL and is 

considered a positive diagnosis. In both the LALA 87 and the 

UKALL/EGOG 2993 trials, T-ALL was related to male sex, age 

range of ˂35-39 years old, high WBC count and CNS 

involvement. A comparatively higher incidence of mediastinal 

mass and anemia were also noted in the LALA-87 trial [51]. 

Patients aged <40 who were treated with only chemotherapy, 

three years DFS demonstrated better efficacy in the group with 

a T-cell phenotype (59%) compared to a B-ALL phenotype 

(20%). No disparity in disease free survival (DFS) was observed 

between patients with B- and T- ALL treated with all or auto 

HSCT. Likewise, OS was found to improve in patients with T-cell 

antigen expression compared to B-lineage antigens [52].  

Application of the protocol developed by the pediatric 

Dana Farber Cancer Institute (DFCI) showed a trend in the 

direction of enhanced clinical outcomes in both adolescents 

and adults with T-ALL [31, 33, 53]. The GRAALL study group [54] 

discovered that after 42 months of implementing a pediatric 

protocol, event free survival (EFS) rate was determined to be 

62% and 52% in T-ALL and in BCP-ALL patients, respectively. 

Within the T-cell ALL subset, the prognosis is better for CD1a+ 

cortical/thymic phenotype compared with the pro-, pre-, and 

mature-T subtypes (CD1a-, CD3-/CD3+). The early T-cell 

precursor ALL that preserves stem cell-like characteristics is 

related to a gloomy prognosis with traditional chemotherapy 

[55] in both adult and childhood T-ALL patients [56].  

As aforementioned, numerous research have indicated 

that patients with B-cell phenotype exhibit a rather poor 

prognosis compared to T-ALL patients. CD10-negative pro-B 

phenotype patients are regarded as high-risk, especially when 

linked with t(4;11)/abn q23 [33, 57]. The pre-B subtype that 

expresses cytoplasmic heavy chains has a dire viewpoint when 

retaining MLL rearrangements. The CD20 antigen is expressed 

in almost half of patients with B-cell ALL and its influence on 

clinical results is contentious. CD20 expression has been shown 

not to impact the attainment of total remission when 

implementing the childhood GRAALL 2003 protocol in adults 

within the age bracket of 15 to 60 years with Ph-negative ALL, 

although it was related to a higher collective occurrence of 

relapse (CIR) and lesser EFS at three and half years (42% vs. 

29%) in patients with a WBC ≥30×109/L (p=0.006).  

Besides, a lower survival in CD20 positive patients using the 

adult-based hyper CVAD procedure was reported [58]. On the 

contrary, a retrospective study [59] reported no relationship 

between CD20 expression and clinical results amongst a cohort 

of adult patients, who were administered a pediatric-based 

regimen. There is a tendency towards positive EFS in patients 

displaying CD20 positivity. CD13 positivity is a self-regulating 

weak prognostic marker for OS, EFS and RFS in a group of 

patients subjected to the DFCI treatment approach. The CD13 

prognostic value was largely observed in patients with regular 

or intermediate risk cytogenetics. 
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Immunophenotype and Genotype Aberrations in T-Cell 

Acute Lymphoblastic Leukemia (T-ALL) 

ALL is a tumor of immature B- or T-cells (lymphoblasts). 

There are several diverse ALL entities, majority of which are 

discernible solely with the use of immunophenotyping in 

addition to contemporary cytogenetic and molecular biology 

methods to identify particular chromosomal reorganizations 

and/or genetic modifications. Specifically, the t(9;22) 

translocation derived from a specific fusion between the ABL1 

and BCR genes (leading to the supposed Philadelphia 

chromosome) arises in an estimated quarter of recorded cases 

and delineates a distinct B-ALL entity. The pathogenesis and 

differential-diagnosis of ALL are not well understood, although 

subjecting a person to or exposure to emitted radiation and 

various chemical agents were demonstrated to be related to an 

amplified risk of contracting the ailment. T-ALL is a biologically 

heterogeneous malignancy, which reveals characteristic 

phases of T-cell segregation arrest. It was analyzed a cohort of 

childhood T-ALL, with the aim of investigating whether the 

association of immunophenotypes with molecular 

modifications could forecast a patient’s clinical outcome [60]. 

To identify genetic mutations, translocations and copy number 

alterations, RT-PCR, Sanger sequencing, MLPA and FISH were 

utilized. By means of multiparametric flow cytometry, eight 

immunophenotypic T-ALL subtypes: early T-cell precursor 

(ETP, n=27), immature (n=38), early cortical (n=15), cortical 

(n=50), late cortical (n=53), CD4/CD8 double negative mature 

(n=31), double positive mature (n=35) and simple positive 

mature (n=31) T-ALL was identified. The most recurring gene 

modifications were CDKN2A/Bdel (71.4%), NOTCH1mut 

(47.6%) and FBXW7mut (17%). The eight T-ALL subclasses are 

distinguished by distinctive molecular profiles. The mutations 

in NOTCH1/FBXW7 and STIL-TAL1 reorganization had a 

prognostic effect that is not based on immunophenotype. 

It was applied Immunophenotypic categorization of T-ALL 

subtypes based on earlier reported parameters [60]. 

Immunophenotyping was carried out via six color mix of 

monoclonal antibodies, implementing the criteria developed 

in [55] (as well as the score scheme from [61]) to recognize ETP-

ALL cases. The classification of ALL is greatly dependent on 

morphological, Immunophenotypic, cytogenetics and 

molecular markers. Based on WHO categorization, there are 3 

wide categories of ALL: precursor B-cell ALL, mature B-cell ALL 

and T-cell ALL. The immunophenotypic classification of ALL is 

presented in Table 3. 

Treatment of ALL 

The treatment of ALL is exceptionally intricate. It consists 

of several rounds of chemotherapy and, for certain patients, 

transplantation of stem cells [57]. It comprises three stages: 

induction, consolidation, and maintenance, with an array of 

available regimens and treatment courses. Historically, ALL 

treatment was anchored in chemotherapy and in certain cases, 

hematopoietic stem cell transplantation, frequently with high 

rates of mortality and relapses. Nonetheless, the recent 

categorization of ALL, which also considers cytogenetic and 

clinical multiplicity of various ALL entities, and the surfacing of 

new targeted therapeutic treatments, particularly TKIs, have 

radically transformed the treatment strategies and enhanced 

diagnosis and prognosis for patients with a number of ALL 

subclasses [62, 63]. Current developments in elucidating the 

biology of leukemia, modification in risk stratification and huge 

Table 3. WHO immunophenotypic classification of ALL [24] 

ALL-subtype Characteristics 

B-cell ALL NOS 

Early pre-B ALL/pro B-ALL CD19+, cCD79a+, cCD22+, nuclear TdT positive, & CD10- 

Common ALL CD10 

Pre-B ALL Cytoplasmic IgM, CD19+, CD79a+, CD22+, & CD10+ 

B-ALL with recurrent cytogenetic abnormalities 

t(9;22) (q34;q11.2); BCR-ABL1 
CD10, CD19, TdT positive, & may express CD13/CD33. CD25 highly associated with t(9;22). p190 transcript (most 

pediatric cases) p210 transcript (50% of adult cases). 

t(v;11q23); MLL 
Highly frequent type of leukemia in infants. Short latency phase. High WBC & CNS involvement. Pro-B 

immunophenotype CD19+, CD10-ve, CD24-ve, CD15+ve neuroglial antigen-2 (NG2) relatively specific. 

t(12;21) (p13;q22); TEL-AML1 

(ETV6- RUNX1) 

Rare in adulthood CD19+ve, CD10+ve, CD34 +ve (frequently). May have close to or total lack of CD9/CD220/ 

CD66c myeloid antigens (CD13) commonly expressed? Essential but adequate for leukemic translocation? 

Hyper diploidy 

More than 50 & typically ˂66 chromosomes devoid of structural aberrations. Non-random: Chromosomes 21, X, 

14, & 4 are most frequent; chromosomes 1, 2, & 3 being least widespread. CD19+ve, CD10+, CD34+ (most cases), 
& CD45-ve (frequent). 

Hypodiploidy 
<44–46 chromosomes. Structural abnormalities are infrequent. CD19+, CD10+ diagnosis may not be recognized 

by normal karyotyping due to endo-duplication 

t(5;14) (q31;q32);IL3-IGH 

Constitutive expression of IL-3 gene. Linked with eosinophilia, consider reactive & not part of leukemic 

performed. Diagnosis may be anchored in immunophenotype & genetic results even though BM blast count is 

low. CD19+ & CD10+. 

t(1;19) (q23;p13.3); E2A-PBX1 

(TCF3-PBX1) 

CD19+, CD10+, cytoplasmic M heavy chain. Increased expression of CD9, lack of CD34 or very restricted CD34 

expression. 

T-cell ALL 

Precursor T- ALL 
CD1a, CD2, CD3, CD4, CD5, CD7 and CD8. CD7 and cCD3 are most often positive. CD3 is lineage specific CD4 /CD8 

are commonly co-expressed; CD10 may be positive; CD79a (10% of cases) CD13/CD33 (19-32% of cases). 

Pro T-cell ALL cCD3+, CD7+, CD2-,CD1a-, CD34+/-; CD4-, & CD8- 

Pre T-cell ALL cCD3+, CD7+, CD2+, CD1a-, CD34+/-; CD4-, & CD8- 

Cortical T-cell ALL cCD3+, CD7+, CD2+, CD1a+, CD34-; CD4+, & CD8+ 

Medullary T-cell ALL cCD3+, CD7+, CD2+, CD1a-, CD34-, sCD34+; CD4+, or CD8+ 

Early T-cell precursor* 
Lack of CD1a/CD8, weak expression of CD5 Presence of 1 or more myeloid or stem cell markers (CD117, CD34, 

HLA-DR, CD13, CD33, CD11b, or CD65). 

Note. NG2: Neuroglial antigen-2; TdT: Terminal deoxynucleotidyl transferase; MLL: Mixed-lineage leukemia; BM: Bone marrow; & HLA: Human 

leukocyte antigen 
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international cooperative group clinical trials have remarkably 

improved in the outcome of pediatric ALL. In general, existing 

treatment regimens can cure over 80% of patients, given that it 

is now possible to identify a subset of patients who can be 

successfully cured with less rigorous treatment strategies [64]. 

Although approximately 20% of patients will eventually 

relapse, which makes relapsed leukemia a foremost cause of 

cancer-related mortality? Endeavors are currently in 

development to innovate strategies to properly recognize 

patients with high risk of relapsing in order to optimize their 

treatment [64]. 

Notwithstanding the significant developments in the 

treatment of ALL, the bulk of ALL cases succumb to the disease 

or treatment-related side effects. Thus, the identification of 

novel therapeutic targets may facilitate the production of new 

substitute treatment strategies such as suppression/induction 

of modified genes, immunotherapy [65, 66]. In ALL patients 

that display an expression profile analogous to BCR-ABL and 

which embody NUP214-ABL1 or EBF1-PDGFB gene fusions, 

imatinib, an inhibitor of ABL and PDGFB, is in preclinical 

assessment [65].  

Given that T cells ALL is an uncommon and particularly 

invasive entity; carriers of mutations in the gene NOTCH1 is 

unresponsive to traditional therapies and exhibit high 

mortality and relapse rates. Hence, NOTCH1 inhibitors are 

being developed as gamma secretase inhibitors (GSIs) For ALL 

treatment, although they have not reached clinical stage since 

there is experimental proof of the resistance of leukemic cells 

to therapy with GSIs, a process that is possibly modulated by 

epigenetic incidents [66]. BDR4 and BCL2 are also target genes 

for the cure of T cells ALL. BDR4 is an over expressed protein in 

the formation of neoplasms and is labeled a possible activator 

for the expression of MYC in cancer and the anti-apoptotic 

molecule Bcl2. Actually, NOTCH1, BDR4 and BCL2 inhibitors 

can be combined as a substitute treatment for T cells ALL [67]. 

As an unconventional treatment, the recent interest in 

immunotherapy requires that the surface antigens of leukemic 

blasts are therapeutic targets. Therefore, bare antibodies and 

immunotoxins are in development, in addition to receptors for 

chimeric antigens and single chain bispecific antibodies that 

combine with T lymphocytes [68]. 

Adult Multidrug regimens have been implemented by a 

number of medical centers since the 1980s. It involves the 

design of treatments that combines accessible anti-leukemia 

drugs that can be administered in a succession of extensive 

treatments [26]. The multidrug combinations are based on a 

mixture of vincristine, anthracycline and prednisone, in the 

presence or devoid of cyclophosphamide and asparaginase. 

The M.D. Anderson model comprises the combination of hyper 

fractionated cyclophosphamide, vincristine, dexamethasone, 

and doxorubicin, varied with high-dose methotrexate and 

cytarabine (hyper-CVAD) [57]. The management involves eight 

courses: four courses of hyper-CVAD (courses 1, 3, 5, and 7) 

alternated with four courses of MTX and HIDAC (courses 2, 4, 6, 

and 8). The intended median survival time was 35 months with 

a five-year estimated survival of 39%. The pediatric approach, 

which is quickly being deployed globally, is the 

implementation of pediatric procedure or pediatric motivated 

course of therapy especially for young people and young adults 

roughly described as patients aged 15 to 35-45 [57, 69]. These 

courses of therapy involves considerably enhancing the non-

myelosuppressive agents such as vincristine and steroids using 

asparaginase at significantly higher cumulative dosages for 

prolonged asparagine depletion and providing very early and 

extended intrathecal methotrexate combined with systemic 

methotrexate (high-dose). This approach is tolerable in a large 

segment of adults. 

Outline of Proteomics Techniques  

Proteomes are the results of thousands of gene 

expressions. Posttranslational modifications (PTMs) and a 

substantial discrepancy in dynamic ranges are responsible for 

the complexities and confusion surrounding proteome 

identification. Thus, elucidating and making simpler the 

mechanism of proteomes would improve the effectiveness of 

the proteomic profiling. For that reason, the bulk of proteomic 

research focuses on enhancing separation techniques with the 

aim of improving the resolution of complex proteomes. 

Irrespective of the progress in liquid chromatography, the 

comprehensive evaluation of proteomics (top-down and 

bottom-up proteomics) remains the focus. This is to be 

expected since it is very hard to solely rely on a single technique 

or equipment for the identification and quantification of 

aspects of a complex protein sample in a straightforward, 

single-step procedure. A number of tools and measures are 

needed to separate and identify polypeptides as well as data 

analysis and integration. The foremost separation tools 

utilized to identify proteomes include gel-based proteomics, 

ionization methods, mass spectrometry equipment, and 

quantification techniques [40, 70]. The two-dimension 

electrophoresis (2-DE) is anchored in the process of protein 

separation based on the existing charges and molecular mass 

in an electric field. 2-DE is the most effectual and high-

resolution protein differentiation technique for composite 

proteomic combination. These techniques are currently well-

tested and are frequently utilized in proteomic analysis [71]. 

Proteomic mass spectroscopy-based techniques are 

utilized for the identification of considerable amounts of novel 

proteins that are prospectively biomarkers. The approaches 

involved in the development of proteomic biomarkers include 

the detection of indicators or identifiers by combining mass 

spectroscopy with multidimensional protein detection 

equipment [72]. Fluorescence in situ hybridization (FISH) is 

utilized for monitoring ailments and identifying particular 

aberrations. The recent use of computational systems and 

bioinformatics for data analysis related to biomolecules on an 

extensive level has become a critical and well established field 

in molecular biology, which is important due to its use for the 

management of huge volume of records and analysis of 

multifaceted and intricate dynamic process [73]. 

Using Proteomic Strategies to Decipher ALL Pathways  

Protein biomarkers can discriminate between high- and 

low-risk ALL in a tissue specific way. The activation, 

propagation and survival of B and T cells for the duration of ALL 

is regulated by a number of signaling pathways that include 

PI3K/AKT/mTOR, JAK/STAT, ABL tyrosine kinase, or NOTCH1 or 

SRC family of tyrosine kinases [74]. Leukemogenesis is 

modulated by regulating and interfacing of those signaling 

cascades as a network. The mTOR activity is elevated at ALL-

relapse, and thus recommended as the therapeutic target for 

the formulation of novel drugs to treat human solid cancers or 

lymphoid malignancies that include ALL. Recently, studies 

have reported the up-regulation of cyclin E in patients in the 

initial phase of relapse [75]. This has shown that signaling 

pathways are related to the progression of ALL [76]. However, 
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there is an inadequate explication of the crucial function of 

proteins related to the stimulation of signaling pathways. 

Moreover, the role of proteins in network-based interaction in 

the course of diagnosing and predicting ALL-relapses has not 

been well elucidated. Nonetheless, phosphoproteomics are 

utilized for the identification and determination of protein 

based biomarkers of ALL-relapse and to investigate roles of 

targeted proteins in cells, tissues, or organs to enhance 

treatment strategies [77, 78]. 

Flow-through proteomic approaches may be valuable for 

ALL-relapse studies by providing a clear outline of the use of 

protein biomarkers to discriminate between high and low risk 

ALL. The strategy begins with the critical requirement of 

sample preparation of body fluids to obtain efficient data for 

proteomics [79]. For instance, cerebrospinal fluid (CSF) holds a 

smaller quantity of proteins that that of blood, which can be 

drastically reduced at the conclusion of the therapy, given the 

absence of leukemic cells in CSF after the treatment. Thus, CSF 

can serve as control. Afterwards, the proteins must be 

purified/isolated from the body fluids using precipitations of 

acetone and TCA-acetone, followed by depleting of the initially 

high abundant proteins as they can affect or serve as artifacts 

in the identification of biomarkers for ALL relapses. The 

resultant purified/depleted proteins are subsequently loaded 

into sequential elution of immunoaffinity chromatography 

(SIMAC) to further purify the phosphorylated proteins. 

Afterwards, isobaric tag for relative and absolute quantitation 

(iTRAQ) is utilized to label the peptides so as to recognize and 

quantify the expression level of the phosphorylated proteins 

using ElectroSpray Ionization and tandem mass spectrometry 

(nano-ESI-MSn) for a specific sample. The resulting likely 

biomarkers are recognized using mass spectrometry, which are 

then validated by means of ELISA and SRM/MRM. SRM or MRM 

is a technique of MSn that facilitates the picking of an ion with 

a specific mass in the initial phase of a triple quadrupole. The 

flow-through proteomic strategy is outlined below (Figure 1). 

In addition, for the different stages of pathology (diagnosis, 

for the duration and at the conclusion of chemotherapy) of ALL 

patients suffering relapses, there is schedule for analyzing the 

body fluid samples (peripheral blood, CSF, BM). The samples 

are analyzed using replicates placed in different vials to 

guarantee reproducibility of the data. The steps entailed in the 

analysis are outlined in Figure 2. First, replicates of the 

samples obtained from a repository of biodata are tested to 

enable reproducibility and guarantee the optimal analytical 

conditions are adhered to. This is imperative so as to achieve 

efficiency in data collection. Secondly, the lymphocytes 

acquired from the peripheral blood and BM samples can be 

extracted using Ficoll, whereas the cells from the CSF can be 

isolated by means of centrifugation. The cells from the three 

sample groups are required to be listed via kits for human cells 

(i.e., RIPA), and the resultant proteins can be dissolved or 

digested by the use of trypsin to obtain the composite 

combination of peptides from the samples. Lastly, the 

resultant peptides can be loaded into sequential elution of 

IMAC (SIMAC) chromatograph for isolation of the 

phosphorylated peptides (or phosphopeptides). Afterwards, 

the isolated/purified phosphopeptides are subjected to the 

processes of desalting, cleaning and concentration (i.e., via 

POROS R3 reverse-phase chromatography) before injecting 

them into the mass spectrometer. The mass spectrometry data 

allows improvement of the data on signaling networks 

associated with ALL relapses, which facilitates the acquisition 

of the phosphoproteome reference map of ALL-relapses, 

thereby unraveling vital indications of ALL-relapses. The use of 

150 µg of proteins for each sample (individualized or pool of 

samples) is sufficient to perform the entire proteomic 

approach and biomarker recognition for ALL-relapses [11]. 

The illustrated issues would untangle the key indications 

that distinguish between stable remission ALL cases and 

relapses. The aforementioned approach can be deployed for 

determination of up and down-regulated (and post-

translationally modified) proteins due to ALL-relapse. This can 

improve diagnosis and enhance the efficiency of therapeutic 

treatments. As hospitals, universities, research centers, and the 

industry implement this strategy and collaborate, information 

from different patients can be collated; consequently 

improving the statistical significance of data and advance the 

clinical benefits. 

 

Figure 1. Feasible flow-through proteomic strategies [74-79] 
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In summary, the illustrated proteomic tools indicate 

developments in clinical studies on paediatric ALL-relapses. 

Although 2DE-gels enable advances in clinical research, 2DE- 

electrophoresis mainly visualizes high abundant proteins; 

hence, protein biomarkers with low expressions can be missed 

or overlooked using this tool. Nonetheless, 2DE is an appealing 

instrument for performing ALL studies on isoform-proteins. By 

directly utilizing LC-MS/MS in preference to, or avoiding 2DE-

gels, the accuracy of the data can be improved with more 

refinement. The appropriate proteomic strategy is dependent 

on the research objectives and kinds of clinical samples to be 

analyzed. By effectively deploying the work-flow presented in 

Figure 1 and Figure 2, the actual protein biomarkers of ALL-

relapses can be identified, which will certainly contribute to 

innovating effectual treatments for ALL patients that succumb 

to relapses. An overview and significant proteomic flow-

through of a number of leukemia research are mentioned in 

Table 1, presenting the sample characteristics and study 

objectives. Case studies of leukemia research utilizing 

proteomics are outlined in Table 4. 

 

Figure 2. Workflow for examination of body fluid samples for various stages of pathology for ALL patients [11] 

Table 4. Synopsis of leukemia studies using proteomics 

Study Methodology Samples/targets/study objectives Findings 

[11] 

Used SELDI-TOF-MS. Subsequently, 
selected candidates were submitted to 

LC-MS/MS & validated via protein chip 

immunoassays. 

Measured the proteomic serum profiles. 

Identified as potential protein biomarkers of 

pediatric ALL: platelet factor 4 (PF4), connective 
tissue activating peptide III (CTAP-III), & two 

fractions of C3a, to differentiate pediatric ALL 

patients from healthy controls & pediatric AML 

patients. 

[12] 

Applied global chromatin analyses via 

MS coupled with proteomics to detect 
& quantify levels of histone 

modifications in bulk chromatin to 

visualize histone alterations related to 

cancer. 

Performed proteomic approaches to detect 
distinct molecular chromatin signatures 

profiling global histone modifications in human 

cancers. 

Identified specific chromatin finger-prints when 
comparing 115 cancer lines. NSD2p.E1099K 

alteration was identified in 14% of t(12;21) 

ETV6-RUNX1-containing ALL. 

[80] 

Surface-enhanced laser desorption/ 

ionization time-off flight mass 
spectrometry (SELDI-TOF-MS). 

Pretreatment of leukemic bone marrow arising 

from pediatric leukemia cases & analysis of cell 
lysates from juvenile leukemia cell lines were 

both performed. 

Proteome analysis has shown ability to 

efficiently differentiate between different types 
of juvenile leukemia. 

[81] 

Applied proteomics techniques using 

DIGE combined to mass spectrometry 

(MS) with a MALDI-TOF. 

Studied proteins whose expression level was 

affected via comparing between leukemia cell 

line HL-60 & adriamycin-resistant HL-60 (HL-

60/ADR). 

Outcome showed that proteins directly 

involved in drug resistance include 

nucleophosmin/B23 (NPM B23) & nucleolin C23 

(C23) are 

[82] Applied 2DE coupled to MS & 

bioinformatics tools. 

Created novel molecule-hybrids of spirocyclic 

ketones with antiproliferative, pro-apoptotic, & 

differentiating action in leukemia cell lines. 

After proteome comparisons, proteins involved 
in cellular metabolism, chaperone function, 

cytoskeletal structure, & RNA synthesis were 

found to be differently expressed. MEL-S3-

treated leukemia cells showed a marked 

expression of glycoprotein IIb/IIIa (CD41) & 
glycoprotein Ib (CD42). 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

In recent times, emphasis has been given to studies of 

leukemia via proteomic strategies. Proteomics is a clear 

approach to profiling ALL since proteins can be altered in 

cellular reactions to internal and external stimuli, and 

progression in disease. Transformation of fundamental 

findings into comprehensive treatment strategy has led to 

numerous studies on proteomic profiling of potential 

biomarkers. Proteome analysis is capable of relating gene 

expressions to cellular functions, which can then be utilized for 

assessment of progression in ALL, diagnosis and prognosis, 

and response to treatment. Hence, this review highlights 

proteomic profile, clinical manifestations and diagnosis, and 

treatment of ALL with emphasis on cytogenetics and 

immunophenotyping. With implementation of flow-through 

proteomic strategies and the wide-ranging workflow for the 

examination of body fluid samples for various stages of 

pathology for ALL patients, relapse cases can be drastically 

reduced. Also, by effectively charting sites of proteins in cells 

via proteome analysis; it is feasible to study molecular and 

biological mechanisms that control manifestation and growth 

of ALL. It is evident from review that proteome analysis should 

be utilized for viable profiling of ALL. 
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