INTRODUCTION
Extramedullary hematopoiesis is encountered in diseases with chronic overproduction of red blood cells. Abnormal hematopoietic tissue usually develops in sites involved in hematopoiesis during fetal development, such as the spleen, liver and kidney; however other locations, such as the paraspinal tissue, especially in the posterior mediastinum, may be involved. Spinal epidural space is a very rare site for extramedullary hematopoiesis and most reports of this condition have been cases of thalassemia, or myeloproliferative disorders like myelofibrosis and polycythemia vera (1,2).

CASE
A 32 year-old-man with a history of acute myeloid leukemia on remission for one year presented with sudden back pain, weakness and reduced sensation in both legs, and urinary incontinence that had progressed over one week. MRI of thoracic and lumbar spine was performed on a 1.5 T system using a body coil due to his neurological symptoms. T1-weighted sequence (TR/TE: 617/15 mce) and T2-weighted sequence (TR/TE: 4300/110 mce) on sagittal and axial images with 3 mm slice thickness were used. Gadolinium enhanced T1-weighted axial images were obtained. Magnetic resonance imaging (MRI) demonstrated spinal cord compression by epidural extramedullary hematopoietic tissue. Spinal epidural space is a very rare site for extramedullary hematopoiesis.

Key words: Acute myeloid leukemia, extramedullary hematopoiesis, spinal cord, MRI.
Extramedullary haematopoiesis and spinal cord expansion of the posterior parts of the ribs. The treatment choice was intravenous prednisolone lasting for two weeks (250 mg; 4 times in a day). His legs became stronger and he regained sensation over the ensuing 5 weeks. Posterior epidural masses and cord edema disappeared on follow-up MRI of the spine.

DISCUSSION

The most common sites of extramedullary hematopoiesis are the liver and the spleen. Paravertebral heterotopic marrow is less common and, when present, usually within the thorax. Involvement of the spinal epidural space by hematopoietic tissue is rather unusual. The rare complication of cord compression due to extramedullary hematopoiesis has most often been reported in patients with thalassemia. Cord compression caused by extramedullary hematopoiesis has also been reported in cases of myelofibrosis, sickle cell anemia and polycythemia vera (3-5). In our case, thoracic cord compression was due to extramedullary hematopoiesis caused by AML that is rarer. Spinal cord compression secondary to extramedullary hematopoiesis commonly occurs in the mid-to-lower thoracic region possibly because of the narrow diameter of the spinal canal in this region.

Treatment of cord compression due to extramedullary hematopoiesis is controversial. In earlier reports, treatment consisted of laminectomy alone or with radiotherapy, with satisfactory responses in most patients. More recently, radiotherapy alone has commonly been carried out because of the well-known radiosensitivity of hematopoietic tissue and its accuracy in the treatment of extramedullary hematopoiesis (4-6). In our patient, by the end of the intravenous steroid therapy his neurological problems had been resolved gradually and he had not undergone additional treatment for extramedullary hematopoiesis.

In conclusion, extramedullary hematopoiesis has to be kept in mind...
in the differential diagnosis of epidural masses although there are not any typical skeletal changes for extramedullary hematopoiesis.

REFERENCES