Electronic Journal of General Medicine

2024, 21(2), em574 e-ISSN: 2516-3507

https://www.eigm.co.uk/ Original Article OPEN ACCESS

Differences in movement patterns related to anterior cruciate ligament injury risk in elite judokas according to sex: A cross-sectional clinical approach study

Francisco J Prados-Barbero ¹ ⁽¹⁾, Eleuterio A Sánchez-Romero ^{3,4,5*} ⁽¹⁾, Juan Nicolás Cuenca-Zaldívar ^{4,6,7} ⁽¹⁾, Francisco Selva-Sarzo ^{1,2,4} ⁽¹⁾

- 1 Master of Continuing Education in Assessment, Physiotherapy and Rehabilitation in Sport, Department of Physiotherapy, University of Valencia, Valencia, SPAIN
- ² Department of Physiotherapy, University of Valencia, Valencia, SPAIN
- ³Department of Physiotherapy, Faculty of Sport Sciences, European University of Madrid, Madrid, SPAIN
- ⁴Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
- ⁵ Physiotherapy and Orofacial Pain Working Group, Sociedad Española de Disfunción Craneomandibular y Dolor Orofacial, Madrid, SPAIN
- ⁶ Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Enfermería y Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, Alcalá de Henares. SPAIN
- ⁷ Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute-Segovia de Arana, Madrid, SPAIN

Citation: Prados-Barbero FJ, Sánchez-Romero EA, Cuenca-Zaldívar JN, Selva-Sarzo F. Differences in movement patterns related to anterior cruciate ligament injury risk in elite judokas according to sex: A cross-sectional clinical approach study. Electron J Gen Med. 2024;21(2):em574. https://doi.org/10.29333/ejgm/14285

ARTICLE INFO

Received: 01 Nov. 2023 Accepted: 11 Jan. 2024

ABSTRACT

The anterior cruciate ligament (ACL) injury stands as a significant concern in judo, necessitating preventive measures. The primary injury mechanism involves knee collapse in valgus, often linked to deficiencies in core strength, neuromuscular control, external rotators, hip abductors, and limitations in ankle and hip mobility. Sexwise, the injury is more prevalent in women across various sports. Therefore, in the present study we observed this possible intersexual disparity in the difference of movement patterns among elite judokas according to their sex, in order to identify those athletes with a higher risk of ACL injury. Notably, there were no discernible differences between sexes in the single leg squat test. Both men and women exhibited compromised neuromuscular control in the non-dominant leg. While ankle dorsiflexion and hip external rotation showed no gender disparities, differences in internal rotation were noted. This particular movement restriction may elevate the risk of ACL injury.

Keywords: anterior cruciate ligament, judo, biomechanics, knee injury, sex differences

INTRODUCTION

Judo is a very popular and commonly practiced martial art and Olympic sport of Japanese origin [1] with more than 20 million judokas worldwide [2]. It is observed that 79.0% of judokas suffer or have suffered an injury lasting more than three weeks [3]. Of all the injuries recorded, the most serious is the anterior cruciate ligament (ACL) rupture [2]. ACL rupture affects with a time loss of three-12 weeks in 10.0%, three-six months in 26.0%, six-nine months in 32.0%, nine-12 months in 18.0% and more than 12 months in 14.0% of the injured judokas. Regarding the post-injury sport level, 32.0% reached the same level, 39% slightly reduced, 24.0% quite reduced, and 5.0% gave up judo [2]. It is especially important to note that ACL injuries can lead to the development of osteoarthritis and/or joint instability, which can affect sports practice as well as work or daily life [4].

According to multiple literature sources, the mechanism of ACL injury is knee collapse in knee valgus [5-13]. Dynamic knee valgus is a multiplanar movement pattern of the lower extremity, potentially composed of a combination of femoral

adduction and internal rotation, knee abduction, anterior tibial translation, external tibial rotation and ankle eversion [7, 9].

MODESTUM

The origin of ACL injury is multifactorial and is largely caused by neuromuscular deficits in structures such as the core, hamstring and quadriceps muscles, hip abductors and external rotators, decreased ankle dorsiflexion and hip mobility [7,8]. Of all these there are differences between men and women, which can lead to a dynamic valgus of the knee and, consequently, to the risk of ACL injury [7, 8, 10-23]. The study in [7] demonstrate that men and women exhibit different activation and muscle recruitment strategies at the hip and knee joints. In judo, the most common mechanism of suffering an ACL tear is through direct contact (70.1%), or indirect contact (20.1%), unlike other sports such as basketball, where the injury usually occurs without contact, in movements such as braking, jumping, or pivoting [5]. It has also been seen that most cases occur when the injured judoka is attacked (67.4%), especially in those techniques in which the leg is used as a fulcrum to knock the opponent down.

Examples include osoto-gari (18.6%) (**Figure 1**), harai-goshi (11.6%) (**Figure 2**), kosoto-gari/gake (14.0%) (**Figure 3**), or kouchi-gari/gake (9.3%) (**Figure 4**).

^{*}Corresponding Author: eleuterio.sanchez@universidadeuropea.es

Figure 1. Osoto-gari (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 5. Counterattack (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 2. Harai-goshi (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 6. Tai-otoshi (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 3. Kosoto-gari/gake (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 7. Grip styles: Kenka-yotsu grip style–A judoka & opponent have different grip sides (left) & Ai-yotsu grip style–A judoka & opponent have same grip side (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 4. Kouchi-gari/gake (Source: Authors, reprinted with informed consent and authorisation of the patients)

Other examples include counterattacking (18.6%) (**Figure 5**) or attacking (14.0%), with the tai-otoshi technique (11.6%) (**Figure 6**) being of note [5, 24].

It has been observed that more injuries occur when judokas fight between judokas of different laterality (kenka-yotsu), i.e., right-handed vs. left-handed, than when they are of the same laterality (ai-yotsu), right-handed vs. right-handed or left-handed vs. left-handed (**Figure 7**) [1, 2].

It is speculated that the higher risk of injury in kenka-yotsu is due to a greater likelihood of being counter-attacked, a common situation of suffering an ACL tear [3, 24].

In a study of ACL injuries in soccer [25], researchers examined 107 case videos of 134 Italian men's professional soccer matches over 10 years. It was found that 44.0% of injuries were non-contact, 44.0% were indirect contact, and 12.0% were direct contact.

Four main injury situations were identified: pressing and tackling, tackling, regaining balance after a kick, and landing from a jump. Knee valgus loading was the primary injury pattern in all situations (81.0%). Most injuries (62.0%) occurred in the first half of matches, with peaks at the start and end of the season.

Under a physiologic load in a position commonly assumed in sports, women tend to position their entire lower extremity and activate muscles in a manner that could increase strain on ACL [26].

Figure 8. CeAR sport facilities (left) & CeAR judo mat in a judo training (right) (Source: Authors, reprinted with informed consent and authorisation of the patients)

Therefore, the main objective of the present study was to detect the possible existence of a differences in movement patterns among elite judokas according to their sex, in order to identify those athletes with a higher risk of ACL injury.

MATERIALS & METHODS

Study Design

We conducted an observational cross-sectional study on 14 male (61.0%) and nine female (39.0%) professional judokas (n=23) performed between November 2022 and March 2023. Procedures were conducted following the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and checklist [27].

Participants

In order to reach an approximation to this athlete profile, the sample was composed of a group of elite judokas from the Specialized High-Performance Center (CeAR) of Judo from Valencia (Figure 8). The selected athletes had to meet a series of requirements to be included in the study be judoka from the Valencia Judo CeAR and be competing at the time of the measurements in national and international championships; be over 18 years of age, not suffer any injury, not have undergone recent surgery or be in a period of readaptation.

Clinical Measurements

For the present study, the test chosen to assess the risk of ACL injury was the single leg squat (SLS) test. The reason for choosing this test is that, as noted above, the mechanism of ACL injury production in judo is through a displacement of the centre of mass towards one leg together with direct contact on that leg, which makes it similar to a monopodal squat. According to Zeller et al. [26], SLS test can be considered a promising candidate for the assessment of risk of ACL injury. Based on Baldazzi et al. [28], SLS test includes single leg closed chain movements, which are typical of open-skill sports, and is also used for knee stability and on the likelihood of ACL injury.

The SLS test was performed as described by Ugalde et al. (Figure 9) [29]. The barefooted athletes were asked to place their hands on their hips and stand on one limb and flex the opposing limb to ninety degrees. They were then instructed to perform a single leg squat to 30 degrees of knee flexion and then return to a fully extended knee position. We checked that the range of motion of the SLS was 30 degrees of knee flexion previously with the goniometer. They performed the SLS three times in a row on each leg. The investigator noted any abnormal responses which consisted of arms flailing, Trendelenberg or collapse of the supporting knee into valgus

Figure 9. Single leg squat test: First stage of test (left) & Second stage of test (right) (Source: Authors, reprinted with informed consent and authorisation of the patients)

Figure 10. Lunge test (Source: Authors, reprinted with informed consent and authorisation of the patients)

which indicated an abnormal respons. We defined a positive SLS test as >2/3 abnormal responses on either leg out of the 6 total trials (3 SLS trials on each leg). Each participant was given either a Positive or Negative score on their SLS test. A Positive SLS test may be suggestive of poor lower extremity mechanics, reduced core strength, or hip abductor weakness.

The SLS test is a simple screening tool that can be employed in physician's offices or during pre-sport physicals to screen for athletes with poor knee control with no additional equipment. In young adults, SLS showed good inter-rater and intra-rater reliability that correlated well with 3D analysis of peak knee flexion, knee medio-lateral displacement and hip adduction. The SLS compared to 2D and 3D video analysis was valid and reliable in young, healthy adults for medio-lateral knee motion and hip function. Thus, the SLS can reliably predict dynamic knee valgus [29].

Assessment of ankle dorsiflexion was performed using Lunge test method [31] (**Figure 10**). The patient placed the foot of the ankle to be measured along the tape measure, with the big toe against the wall and the toe and heel on the centre line of the tape. The patient was instructed to bring his knee as close to the wall as stiffness or pain would allow. Pronation was not controlled. The patient was allowed to lean against the wall if necessary. The therapist firmly held the patient's heel to the floor. Progressively, they were asked to move their toe

Figure 11. Passive hip internal rotation (Source: Authors, reprinted with informed consent and authorisation of the patients)

backwards away from the wall on the treadmill, repeating the lunging motion until the maximum distance the knee could be brought towards the wall without the heel being lifted. The point at which the patient's heel was felt to lift indicated the limit of motion at which the measurement was taken [31]. The Lunge test has demonstrated good to excellent reliability, with intraclass correlation coefficients (ICC) between 0.80 and 0.96 for the asymptomatic side. On the symptomatic side, the Lunge test has even shown excellent reliability, with ICCs greater than 0.90 [32].

Passive hip mobility was assessed bilaterally by Hip mobility test. For this purpose, the participant was placed in the supine position with the hip to be assessed in 90° flexion. The contralateral limb was placed in full extension. While performing internal and external rotations of the hip to be measured, the pelvis was stabilized so that the head and neck of the femur contacted the acetabular rim (**Figure 11**).

These measurements were performed three times with each hip and measured with a universal goniometer and the average value was calculated [21].

In order to perform the tests, it was necessary to use a tape measure with an accuracy of one mm for Lunge test and a goniometer for the hip mobility test. The application of a goniometer in these circumstances provides good reliability for the symptomatic side [30]. All these possibilities refer to possible abnormalities during the SLS test that could make it positive: Arms (arms failing), Nothing (no abnormal movements, negative), Pelvis (Trendelenberg), Valgus (knee valgus), Valgus and arms (knee valgus and arm failing), Valgus, arms and pelvis (all of them). The number of participants with these characteristics and the percentage were collected for the SLS. On the Lunge test the values were collected in centimeters, and on the hip mobility test, in degrees.

Statistical Analysis

For statistical analysis, the program R ver. 4.1.3 (R Foundation for Statistical Computing, Institute for Statistics and Mathematics, Welthandelsplatz 1, 1020 Vienna, Austria) was used. The level of significance was established at p<0.05. Shapiro-Wilk test was used to test the distribution of the quantitative variables. Quantitative variables were described with mean (M)±standard deviation (SD) and qualitative variables with absolute and relative values (%). The presence

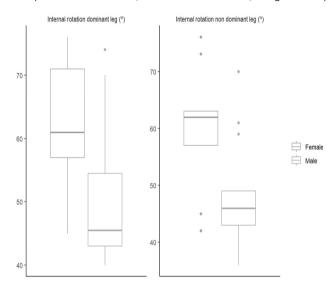
of significant differences in the quantitative outcome variables based on sex was analyzed using the student's t-test (after verification of the assumption of homogeneity of variances with Levene test) or with Mann-Whitney U test depending on its distribution, while Fisher's exact test was applied to the qualitative variables. The effect size was calculated using Cohen's d in the quantitative variables with a normal distribution, defined as small (<0.5), medium (0.5-0.8) and large (0.8), or with the non-parametric estimator r in the variables with a non-normal distribution defined as small (<0.4), medium (0.4-0.6) and large (>0.6). In the case of qualitative variables, Cramer's V was used, defining it as small (<0.1), medium (0.1-0.2) and large (>0.2). Linear regression models were applied with the quantitative outcome variables as dependent and sex and dominance as explanatory variables; in the case of SLS, it was dichotomized as negative (absence of response) and positive (presence of any response) to apply similar binary logistic regression models. In both cases the objective was to evaluate the effect of the dominant leg on the results depending on sex.

RESULTS

The study involved 23 players with a majority of men (60.9%) and right dominant leg (69.6%) (**Table 1**).

The presence of significant differences is verified in the variable Internal rotation dominant leg (°) (Z=2.588, p=0.01) with a medium and significant effect size and higher values in women in 12.389 (2.651, 22.127) degrees compared to men. Significant differences are also shown in the variable Internal rotation non-dominant leg (°) (t[15.614]=2.615, p=0.014) with a

Table 1. Demographic characteristics of participants & overall outcomes (n=23)


Characteristics	n (%)
Sex	
Female	9 (39.1)
Male	14 (60.9)
Dominant leg	
Left	7 (30.4)
Right	16 (69.6)
SLS dominant leg	
Arms	2 (8.7)
Nothing	12 (52.2)
Pelvis	1 (4.3)
Valgus	6 (26.1)
Valgus & arms	1 (4.3)
Valgus, arms, & pelvis	1 (4.3)
SLS non-dominant leg	
Arms	5 (21.7)
Arms & pelvis	2 (8.7)
Nothing	10 (43.5)
Pelvis & valgus	2 (8.7)
Valgus	2 (8.7)
Valgus & arms	1 (4.3)
Valgus & pelvis	1 (4.3)
	M±SD
Lunge test dominant leg (cm)	13.04±3.47
Lunge test non-dominant leg (cm)	13.17±3.02
External rotation dominant leg (°)	90.52±8.70
Internal rotation dominant leg (°)	54.35±12.32
External rotation non-dominant leg (°)	87.91±10.25
Internal rotation non-dominant leg (°)	52.91±11.72

Note. Data expressed as M±SD or with absolute & relative values (%); SLS: Single Leg Squat test

Table 2. Outcomes by sex

Variable	Female (n=9)	Male (n=14)	Levene test ^a	ар	Average difference (95% CI)	Effect size (95% CI)
SLS dominant leg						
Arms	0 (0.0)	2 (14.3)		0.486		0.440 (0.466, 1.000)+
Nothing	5 (55.6)	7 (50.0)				
Pelvis	0 (0.0)	1 (7.1)				
Valgus	3 (33.3)	3 (21.4)				
Valgus & arms	0 (0.0)	1 (7.1)				
Valgus, arms, & pelvis	1 (11.1)	0 (0.0)				
SLS non-dominant leg						
Arms	2 (22.2)	3 (21.4)		0.719		0.400 (0.511, 1.000)
Arms & pelvis	1 (11.1)	1 (7.1)				
Nothing	4 (44.4)	6 (42.9)				
Pelvis & valgus	0 (0.0)	2 (14.3)				
Valgus	1 (11.1)	1 (7.1)				
Valgus & arms	0 (0.0)	1 (7.1)				
Valgus & pelvis	1 (11.1)	0 (0.0)				
Lunge test dominant leg (cm)	12.11±2.98	13.64±3.73	0.354	0.313	-1.532 (-4.468, 1.405)	-0.442 (-1.341, 0.457)*
Lunge test non-dominant leg (cm)	12.33±2.65	13.71±3.22	0.451	0.296	-1.381 (-3.955, 1.193)	-0.458 (-1.358, 0.441)*
External rotation dominant leg (°)	93.11±8.88	88.86±8.47	0.698	0.262	4.254 (-3.624, 12.132)	0.493 (-0.408, 1.394)*
Internal rotation dominant leg (°)	61.89±10.69	49.50±11.04	0.884	0.010	12.389 (2.651, 22.127)	0.540 (0.160, 0.798)†
External rotation non-dominant leg (°)	92.56±12.95	84.93±7.08	0.017	0.134	7.627 (-2.735, 17.989)	0.783 (-0.137, 1.703)*
Internal rotation non-dominant leg (°)	60.00±11.18	48.00±9.65	0.790	0.014	12.000 (2.253, 21.747)	1.166 (0.190, 2.142)*

Note. CI: Confidence interval; Data expressed as M±SD or with absolute & relative values (%); SLS: Single Leg Squat test; *: Cohen's d effect size; †: Non-parametric r effect size; +: Cramer's V effect size; & *Significant if p<0.05 (shown in red)

Figure 12. Significant variables box-plots (Source: Authors' own elaboration)

large and significant effect size and values also higher in women in 12 (2.253, 21.747) degrees compared to men (**Table 2** and **Figure 12**).

Table 3 shows how neither the dominant leg nor the interaction sex:dominant leg are significant, which indicates that dominance does not influence the results.

DISCUSSION

The main objective of the present study was to detect the possible existence of a differences in movement patterns among elite judokas according to their sex, in order to identify those athletes with a higher risk of ACL injury.

Firstly, no differences were observed between sexes in SLS test, neither in the dominant nor in the non-dominant leg. Furthermore, no differences were observed between men and women in the different hip external rotation tests of both lower limbs and in Lunge test bilaterally. On the other hand, in the hip

Table 3. Dominant leg covariable effect over sex

			External		External			
Sex	Lunge test dominant leg (cm)	F(1)=1.154, p=0.296	rotation dominant leg	F(1)=1.230, p=0.281	rotation non- dominant leg	F(1)=3.793, p=0.066	SLS dominant leg	Z=0.438, p=0.661
	(6111)		(°)		(°)			
Dominant leg		F(1)=3.642,		F(1)=0.270,		F(1)=4.157,		Z=-0.299,
		p=0.072		p=0.609		p=0.056		p=0.765
Sex: Dominant leg		F(1)=0.000,		F(1)=0.149,		F(1)=0.565,		Z=-0.244,
		p=0.987		p=0.703		p=0.461		p=0.807
Sex	Lunge test		Internal		Internal			
	non-	F(1)=1.269,	rotation	F(1)=7.36,	rotation non-	F(1)=7.616,	SLS non-	Z=0.008,
	dominant leg	p=0.274	dominant leg	p=0.014	dominant leg	p=0.013	dominant leg	p=0.993
	(cm)		(°)		(°)			
Dominant leg		F(1)=4.159,		F(1)=2.334,		F(1)=1.161,		Z=1.546,
		p=0.056		p=0.143		p=0.295		p=0.122
Sex: Dominant leg		F(1)=0.018,		F(1)=0.551,		F(1)=1.903,		Z=-0.009,
		p=0.895		p=0.467		p=0.185		p=0.993

Note. SLS: Single Leg Squat test; ^aSignificant if p<0.05 (shown in red)

internal rotation tests, differences were observed between men and women, both in the dominant and non-dominant leg.

With regard to SLS test, no differences were observed between men and women in either the dominant or nondominant lower limb.

It should also be noted that the prevalence of obtaining a positive test in this test is quite low, 8.7% for the dominant and 26.1% for the non-dominant. If the data is analyzed in more depth, it can be observed that of all the judokas, a large number obtained at least one positive in one of the items assessed in SLS test (in the dominant leg 60.9% and in the non-dominant leg 82.6%). If only one positive in these items, the overall test result is negative, so it is of great importance to note the high rate of positives in these aspects in isolation. This data is of great interest as it may support the high prevalence of ACL injury in judo.

If we analyze the positivity of the test between both legs, we observe a higher positivity of some of the items and of SLS test in the non-dominant leg, which is of great importance since this is the support leg in monopodal support techniques.

In addition, more ACL injuries occur in bouts between judokas with opposite laterality and with techniques such as osoto-gari or harai-goshi in which the attacked judoka receives the attack on the non-dominant leg [5]. Of all the possible abnormal movement patterns that can be observed and assessed in SLS test, such as arm flailing, knee valgus and trendelenberg, the one that can be seen the least in both legs is pelvic instability or trendelenberg sign (8.7% in the dominant lower limb and 21.7% in the non-dominant). This indicates that there is good control of the core musculature. However, there is a high percentage of judokas with uncontrolled arm movements (17.4 and 34.8%, respectively) and dynamic knee valgus (34.8 and 26.1%, respectively). From these data it can be assumed that the judoka's stability cannot depend on the arms, since in the usual combat situations in which ACL injuries usually occur, it is the opponent who attacks, being unlikely to be able to maintain the balance and stability of the attacked knee with a support of the hands on the opponent. On the other hand, it is of utmost importance to highlight the role of knee valgus observed in SLS test, a movement previously mentioned as being mainly responsible for ACL injury [5-13]. Therefore, it would be of great interest to perform neuromuscular control exercises to stabilize dynamic knee valgus without the intervention of the arms.

The study in [25] found that 90.0% of ACL injuries involved loading the injured leg, often with a limb on the ground (70.0%). They stated that proper biomechanics, aligning force vectors for joint stability, were crucial. ACL injuries were the result of mechanical perturbations to the upper or lower body during interactions with opponents, without direct contact with the knee. Hip abduction motion was frequent, resulting in increased hip internal rotation and adduction in most cases, possibly due to an externally oriented knee abduction moment from hip abduction. Injuries were more frequent in the first half of matches, suggesting that factors other than fatigue played a role, possibly related to hip rotation and myotatic reflexes.

In terms of physical preparation for competition, it was evaluated the efficacy of a specific judo injury prevention warm-up program supervised by a coach on overall injury prevalence and concluded that the intervention did not significantly reduce the prevalence of overall and severe injuries [33]. It was found that the type of injury, sport level,

treatment method and gender seemed to influence the judoka's psychological preparation and ability to return to sport after injury [34]. However, in the present study no differences were observed between sexes in the external rotation of the athletes participating in the study, neither in the dominant nor in the non-dominant leg. On the other hand, statistically significant differences were observed in the internal rotation of both legs, with the mean range of this movement being lower in men than in women. This difference may be related to the dynamic knee valgus observed as the main mechanism of injury [5-13]. As for the hip, this movement involves adduction and internal rotation of this joint [7, 9].

On the other hand, it is of great relevance to highlight that restrictions in hip mobility may be a risk factor for ACL injury [21, 22, 31]. Clinical and radiological studies assessing this injury risk have shown an association between decreased hip rotations and the likelihood of previous ACL injury [22]. In addition, in silico biomechanical simulations and cadaver studies have provided evidence of a mechanism of hip restriction at ACL, highlighting the importance of internal rotation restrictions. Indeed, the study in [22] discusses the association of ACL injury risk with hip internal rotation limitation. As hip IR increases, the likelihood of ACL rupture decreases. However, prospective cohort studies are needed to establish that decreased hip mobility is a risk factor for ACL injury, so this may not be sufficient reason to determine that men are at greater risk of ACL injury. However, as mentioned above, it is of great importance to work on the neuromuscular control of the external rotators and hip abductors, which are responsible for braking and stabilizing the knee towards valgus collapse. If they do not exercise their function, they could lead to increased ligamentous tension and thus an increased risk of ACL injury [7, 9, 10, 15].

Finally, the data obtained in Lunge test was analyzed. This test also does not show different results between men and women in both dominant and non-dominant lower limbs. Although the averages of both legs were higher in the male gender, these differences were not statistically significant, so neither can we show a disparity in the risk of ACL injury between the sexes due to ankle dorsiflexion restriction.

As already noted, there is no biomechanical factor that is really a demonstrable cause to conclude that, as in other sports such as basketball, handball, volleyball or football, the risk of ACL injury is higher in women than in men [5-7, 35]. This is probably due to the way in which they occur. In all the sports mentioned above, the majority of ACL injuries occur in noncontact actions such as changes of direction, braking and jumping. Based on these results, neuromuscular training methods were developed to reduce the risk of non-contact ACL injuries. Due to the characteristics of judo as a martial art, a non-contact mechanism is not the main cause of ACL injuries, and a neuromuscular training approach may not be suitable for prevention [5]. As developed in [5], the occurrence of ACL injury is more common in movements, where the leg is used as a fulcrum, when the injured judoka is attacked and when the judoka is on the opposite side of the body. Therefore, the difference observed between both sexes in other sports may not be extrapolated to judo [36]. Deficits in postural control and neuromuscular function of the knee and hip are highly predictive of the risk of a second ACL injury after return to sport following ACL reconstruction [7, 37]. Rehabilitation programs aimed at reducing functional asymmetries prior to return to sport after ACL reconstruction may be necessary to reintegrate these patients more safely into sport [7, 37].

In our study we have assessed mobility and activation of the lower limb joints, observing limitation in hip internal rotation that could modify the force vectors in the entire lower limb, increasing the risk of injury. Impaired hip rotation ROM is commonly associated to lower extremity pathology [38]. The influence of central descending reflexes in improving hip mobility has been demonstrate [39]. Due to the contribution of the sensorimotor cortex in joint flexibility [40].

It would be necessary to find and modulate the mobility dysfunctions produced by the central descending reflexes in order to improve neuromuscular activation and therefore joint stability. In this way, the judoka would be as well repaired as possible to respond and protect himself from the opponent's impacts.

Limitations & Strengths

This study also presents a series of limitations, such as the proportion between both sexes and the number of participants because they are elite athletes.

In addition, no data was collected on previous injuries because they were competing at a high level and thus be able to assess the possible dysfunctions that they could create.

This would have been of great interest as a previous ACL injury significantly increases the likelihood of sustaining another ACL injury. Even so, significant differences were only found in hip internal rotation.

CONCLUSIONS

Although in other sports there is a difference between men and women in the prevalence of ACL injury, there is no sex disparity in judo. This may be due to the fact that the most common mechanism of injury in judo is contact, unlike in other sports, where it is non-contact.

There is worse neuromuscular control of non-dominant leg in men and women. Motor control is defined here as the way in which the nervous system controls posture and movement to perform a specific motor task, and includes consideration of all the associated motor, sensory, and integrative processes.

No differences are seen in hip external rotation between men and women, but there are differences in internal rotation possibly produced by central descending reflexes, a movement whose restriction may be related to an increased risk of ACL injury.

Author contributions: FJP-B, EAS-R, JNC-Z, & FS-S: validation; FJP-B, JNC-Z, & FS-S: methodology; FJP-B & JNC-Z: data curation; FJP-B & FS-S: conceptualization & writing-original draft preparation; FJP-B: software, investigation, resources, & visualization; EAS-R, JNC-Z, & FS-S: formal analysis, writing-review & editing, & supervision; & FS-S: project administration. All authors have agreed with the results and conclusions.

Funding: No funding source is reported for this study.

Acknowledgments: The authors would like to thank the Specialized High-Performance Center (CeAR) and the Valencia Judo Federation for allowing us to use their facilities to carry out thes test and photographs. The authors would also like to thank all judo trainers and judo athletes from CeAR Judo Valencia and the Valencia Judo Federation for their participation in this study. The authors would also like to thank all experts involved in the development of the intervention.

Ethical statement: The authors stated that the study was conducted in accordance with the Declaration of Helsinki and approved by the

Human Research Ethics Committee from the Universitat de Valencia by number 1675151998994, Valencia, Spain (February 9, 2023). Written informed consents were obtained from all subjects involved in this study.

Declaration of interest: No conflict of interest is declared by authors. **Data sharing statement:** Data supporting the findings and conclusions are available upon request from the corresponding author.

REFERENCES

- Pocecco E, Ruedl G, Stankovic N, et al. Injuries in judo: A systematic literature review including suggestions for prevention. Br J Sports Med. 2013;47(18):1139-43. https://doi.org/10.1136/bjsports-2013-092886 PMid: 24255909
- Akoto R, Lambert C, Balke M, Bouillon B, Frosch KH, Höher J. Epidemiology of injuries in judo: A cross-sectional survey of severe injuries based on time loss and reduction in sporting level. Br J Sports Med. 2018;52(17):1109-15. https://doi.org/10.1136/bjsports-2016-096849 PMid: 28446454
- von Gerhardt AL, Vriend I, Verhagen E, Tol JL, Kerkhoffs GMMJ, Reurink G. Systematic development of an injury prevention programme for judo athletes: The IPPON intervention. BMJ Open Sport Exerc Med. 2020;6(1): e000791. https://doi.org/10.1136/bmjsem-2020-000791 PMid:33033621 PMCid:PMC7534731
- Sánchez Romero EA, Lim T, Alonso Pérez JL, Castaldo M, Martínez Lozano P, Villafañe JH. Identifying clinical and MRI characteristics associated with quality of life in patients with anterior cruciate ligament injury: Prognostic factors for long-term. Int J Environ Res Public Health. 2021; 18(23):12845. https://doi.org/10.3390/ijerph182312845 PMid:34886570 PMCid:PMC8657193
- Koshida S, Deguchi T, Miyashita K, Iwai K, Urabe Y. The common mechanisms of anterior cruciate ligament injuries in judo: A retrospective analysis. Br J Sports Med. 2010; 44(12):856-61. https://doi.org/10.1136/bjsm.2008.051425 PMid:19042919
- Larwa J, Stoy C, Chafetz RS, Boniello M, Franklin C. Stiff landings, core stability, and dynamic knee valgus: A systematic review on documented anterior cruciate ligament ruptures in male and female athletes. Int J Environ Res Public Health. 2021;18(7):3826. https://doi.org/10.3390/ijerph18073826 PMid:33917488 PMCid: PMC8038785
- 7. Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J Orthop Res. 2016;34(11):1843-55. https://doi.org/10.1002/jor. 23414 PMid:27612195 PMCid:PMC5505503
- Mehl J, Diermeier T, Herbst E, et al. Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch Orthop Trauma Surg. 2018;138(1):51-61. https://doi.org/10.1007/s00402-017-2809-5 PMid: 28983841
- Wilczyński B, Zorena K, Ślęzak D. Dynamic knee valgus in single-leg movement tasks. Potentially modifiable factors and exercise training options. A literature review. Int J Environ Res Public Health. 2020;17(21):8208. https://doi.org/10.3390/ijerph17218208 PMid:33172101 PMCid:PMC7664395

- Jeong J, Choi DH, Shin CS. Core strength training can alter neuromuscular and biomechanical risk factors for anterior cruciate ligament injury. Am J Sports Med. 2021;49(1):183-92. https://doi.org/10.1177/0363546520972990 PMid: 33381989
- LaBella CR, Hennrikus W, Hewett TE, Council on Sports Medicine and Fitness, and Section on Orthopaedics. Anterior cruciate ligament injuries: Diagnosis, treatment, and prevention. Pediatrics. 2014;133(5):e1437-50. https://doi.org/10.1542/peds.2014-0623 PMid:24777218
- 12. Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations update 2010. N Am J Sports Phys Ther. 2010;5(4):234-51.
- Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations - update 2010. N Am J Sports Phys Ther. 2010 Dec;5(4):234-51. PMid:21655382 PMCid:PMC3096145
- Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: A prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368-73. https://doi.org/10.1177/ 0363546506297909 PMid:17267766
- Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: Prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123-30. https://doi.org /10.1177/0363546507301585 PMid:17468378
- 16. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am J Sports Med. 2005;33(4):492-501. https://doi.org/10.1177/036354650426 9591 PMid:15722287
- Wahlstedt C, Rasmussen-Barr E. Anterior cruciate ligament injury and ankle dorsiflexion. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3202-7. https://doi.org/10.1007/ s00167-014-3123-1 PMid:24923690
- Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. Am J Sports Med. 1999;27(6):699-706. https://doi.org/10.1177/03635465990270060301 PMid: 10569353
- Sasaki S, Tsuda E, Yamamoto Y, et al. Core-muscle training and neuromuscular control of the lower limb and trunk. J Athl Train. 2019;54(9):959-69. https://doi.org/10.4085/ 1062-6050-113-17 PMid:31386583 PMCid:PMC6795098
- Dargo L, Robinson KJ, Games KE. Prevention of knee and anterior cruciate ligament injuries through the use of neuro-muscular and proprioceptive training: An evidence-based review. J Athl Train. 2017;52(12):1171-2. https://doi.org/10.4085/1062-6050-52.12.21 PMid: 29172648 PMCid:PMC5759702
- 21. Gomes JLE, de Castro JV, Becker R. Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy. 2008;24(9):1034-7. https://doi.org/10.1016/j.arthro.2008.05.012 PMid:18760211
- VandenBerg C, Crawford EA, Sibilsky Enselman E, Robbins CB, Wojtys EM, Bedi A. Restricted hip rotation is correlated with an increased risk for anterior cruciate ligament injury. Arthroscopy. 2017;33(2):317-25. https://doi.org/10.1016/j.arthro.2016.08.014 PMid:27840056

- 23. Powden CJ, Hoch JM, Hoch MC. Reliability and minimal detectable change of the weight-bearing lunge test: A systematic review. Man Ther. 2015;20(4):524-32. https://doi.org/10.1016/j.math.2015.01.004 PMid: 25704110
- 24. von Gerhardt AL, Reurink G, Kerkhoffs GMMJ, et al. Effectiveness of a judo-specific injury prevention programme: A randomised controlled trial in recreational judo athletes. Br J Sports Med. 2023;57(8):450-6. https://doi.org/10.1136/bjsports-2022-105869 PMid: 36717214
- Della Villa F, Buckthorpe M, Grassi A, et al. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020;54:1423-32. https://doi.org/10.1136/bjsports-2019-101247 PMid:32561515
- 26. Zeller BL, McCrory JL, Ben Kibler W, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449-56. https://doi.org/10.1177/ 03635465030310032101 PMid:12750142
- 27. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J Clin Epidemiol. 2008;11:260-5. https://doi.org/10.1016/j.jclinepi.2007.11.008 PMid:18313558
- 28. Baldazzi A, Molinaro L, Taborri J, Margheritini F, Rossi S, Bergamini E. Reliability of wearable sensors-based parameters for the assessment of knee stability. PLoS ONE. 2022;17(9):e0274817. https://doi.org/10.1371/journal.pone .0274817 PMid:36137143 PMCid:PMC9499276
- 29. Ugalde V, Brockman C, Bailowitz Z, Pollard CD. Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. PM R. 2015;7(3):229-35. https://doi.org/10.1016/j.pmrj.2014.08.361 PMid:25111946
- Ressman J, Grooten WJA, Rasmussen-Barr E. Visual assessment of movement quality: A study on intra- and inter-rater reliability of a multi-segmental single leg squat test. BMC Sports Sci Med Rehabil. 20218;13(1):66. https://doi.org/10.1186/s13102-021-00289-x PMid: 34099021 PMCid:PMC8186063
- 31. Simondson D, Brock K, Cotton S. Reliability and smallest real difference of the ankle lunge test post ankle fracture. Man Ther. 2012;17(1):34-8. https://doi.org/10.1016/j.math. 2011.08.004 PMid:21959254
- 32. Shi X, Ganderton C, Tirosh O, Adams R, Ei-Ansary D, Han J. Test-retest reliability of ankle range of motion, proprioception, and balance for symptom and gender effects in individuals with chronic ankle instability. Musculoskelet Sci Pract. 202316;66:102809. https://doi.org/10.1016/j.msksp.2023.102809 PMid:37354602
- 33. von Gerhardt AL, Reurink G, Kerkhoffs GMMJ, et al. Effectiveness of a judo-specific injury prevention programme: A randomised controlled trial in recreational judo athletes. Br J Sports Med. 2023;57(8):450-6. https://doi.org/10.1136/bjsports-2022-105869 PMid: 36717214
- 34. Lambert C, Guenther D, Schütz L-M, et al. Psychological readiness is related to return to sport in judo injuries: A cross-sectional study. BMC Sports Sci Med Rehabil. 2023;15(1):20. https://doi.org/10.1186/s13102-023-00631-5 PMid:36797731 PMCid:PMC9933272

- 35. Nakano N, Bartlett J, Khanduja V. Is restricted hip movement a risk factor for anterior cruciate ligament injury? J Orthop Surg (Hong Kong). 2018;26(3):230949901879952. https://doi.org/10.1177/2309499018799520 PMid:30253690
- 37. Prill R, Michel S, Schulz R, Coriolano HJ. Body composition and strength parameters in elite judo athletes 5 years after anterior cruciate ligament reconstruction. Int J Sports Med. 2019;40(01):38-42. https://doi.org/10.1055/a-0787-1420 PMid:30481831
- 38. Martin RL, Enseki KR, Draovitch P, Trapuzzano T, Philippon MJ. Acetabular labral tears of the hip: Examination and diagnostic challenges. J Orthop Sports Phys Ther. 2006; 36(7):503-15. https://doi.org/10.2519/jospt.2006.2135 PMid:16881467
- 39. Henriques IAD, Lattari E, Torres G, et al. Can transcranial direct current stimulation improve range of motion and modulate pain perception in healthy individuals? Neurosci Lett. 2019;707:134311. https://doi.org/10.1016/j.neulet. 2019.134311 PMid:31158433
- Mizuno T, Aramaki Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci Res. 2017;114:55-61. https://doi.org/10.1016/j.neures.2016 .08.004 PMid:27576117